

Evaluating the Stability of Monoclonal Antibodies: Forced Degradation in Method Development

BRENT KENNEDY

MANAGER, BIOLOGICS ANALYTICAL SERVICES, CATALENT

more products. better treatments. reliably supplied.™

Catalent Kansas City: Center of Excellence

Broad Capacity, Extensive Technical Expertise & Exceptional Customer Experience

95%+	30+	200+
On Time Delivery	Years of Experience	Scientists
 90%+ Returning Customers 9+ out of 10 customers would recommend to others Dedicated PM & technical lead 	 40% of analysts has MS or PhD 300+ programs supported Avg. 30 audits performed annually Zero 483-form issued during last inspection 	 800+ assays and techniques 20,000+ ft³ of lab space 31,000+ ft³ stability storage Low turnover ~10%

A Powerful Offering Stemming Across Modalities From Traditional to Emerging Modalities & from Discovery to Commercial

AGENDA

1 Why Forced Degradation Matters Major Degradation Pathways 2 Forced Deg Study: Cetuximab 3 Execution: Forced Degradation Results 4 Your Molecule at Catalent 5 Q&A

The Problem with Stability in mAbs

What if your biologic

fails stability testing

late in development?

Understanding Forced Degradation (FD)

Accelerated forced degradation mimics long-term storage conditions, providing knowledge into potential degradation mechanisms during a product's shelf-life

Quality by Design	Helps define the design space to maintain critical quality attributes
Chemical Stability	Identifies pathways like deamidation, oxidation, aggregation, and fragmentation
Physical Stability	Evaluates the impact of temperature, pH, UV/light, freeze/thaw, and agitation on antibody structure

Regulatory Compliance	Meets FDA, EMA, and ICH Q1A guidelines to confirm stability-indicating methods
·	
Analytical Specificity	Develops methods to detect impurities and degradation products.
(
Formulation Development	Identifies excipients that affect stability to optimize formulation
·	
Safety Considerations	Assesses degradation products for potential safety risks at clinical levels

AGENDA

Typical Degradation Pathways of mAb's

Analytical Instrumentation for Biologics Development

SV-AUC

- MW, sedimentation coefficient, % distribution
- Ensures aggregation & stability analysis

- MW, size & polydispersity
- Provides purity & consistency profiles

- Real-time charge heterogeneity analysis
- Supports robust QA/QC processes

- Highresolution purity & potency analysis
- Ensures biologic quality & performance

Image source: Images of analytical instruments are from respective vendors and are for illustrative purposes only. All trademarks and product names are the property of their respective owners.

AGENDA

Q&A

1 Why Forced Degradation Matters

2 Major Degradation Pathways

3 Forced Deg Study: Cetuximab

4 Execution: Forced Degradation Results

5 Your Molecule at Catalent

Forced Degradation Study: Cetuximab

Indicated for the treatment of metastatic colorectal cancer, metastatic non-small cell lung cancer as well as head and neck cancer Cetuximab was chosen for its significance as a therapeutic IgG1 mAb

 Formulated at 10 mg/mL in 10 mM sodium phosphate, 140 mM NaCl; pH 7.2; pI = 8.48 Forced degradation studies require advanced bioanalytical capabilities to accurately detect, characterize & quantify molecular changes under various stress conditions

SEC-MALS (Molecular weight, aggregation, fragments, non-covalent association)	SV-AUC (Sedimentation coefficient, Size distribution, molecular weight, self-association, irreversible aggregation)	DLS (Monodispersity, polydispersity, size distribution)
icIEF (PTM, charge variants, heterogeneity, pI)	CE-SDS (Covalent aggregates, purity, cross-linking)	HIC (Oxidation, deamidation, aggregation)
CEX (Deamidation, oxidation, alycation)		

Degradation Conditions Used for Study

- Chemical Degradation
 - pH (acid & base)
 - Oxidation
 - Photolysis

Physical Degradation

- Thermal
- Freeze / thaw
- Mechanical (stir / shake)

	Chemical Degradation				Physical Degradation				
Test	Hydrolysis		Oxidation Photolysis	Thermal	Freeze/Thaw	Mechanical			
	Acid (pH 3)	Base (pH 9)	(H ₂ O ₂)	(UV 15 hrs)	(50°C)	(50°C)	(5 cycles)	Stir (magnetic)	Shake (350 rpm)
HIC			Х		Х				
CEX	Х	Х			Х				
DLS	Х	Х		Х	Х	Х	>	K	
SEC-MALS	Х	Х		Х	Х	Х	>	K	
SV-AUC	Х	Х		Х	Х	Х	>	K	
icIEF	Х	Х	Х	Х	Х				
CE-SDS	Х	Х			Х				

AGENDA

1 Why Forced Degradation Matters

2 Major Degradation Pathways

3 Forced Deg Study: Cetuximab

4 Execution: Forced Degradation Results

5 Your Molecule at Catalent

SEC-HPLC Chromatograms (A₂₈₀) of Cetuximab Subjected to **Thermal** Degradation at 50 °C for Up to 7 Days

- Growth of HMW 2 species apparent even after 1 day at 50C
- Increase in fragment species (LMW 1, LMW 2) over the time course study

SEC-MALS Chromatograms & MW Data for Cetuximab Subjected to **Thermal** Degradation at 50°C Over 7 Days

Sample ID/Lot	MW Monomer (avg), Da	MW HMW 1 (avg), Da	MW HMW 2 (avg), Da	MW LMW (avg), Da
Thermal Control	145800	276100	1095000	108200
Thermal T = 1 Day	145800	297100	1934000	93270
Thermal T = 5 Days	145800	332300	2451000	108000
Thermal T= 7 Days	145800	328100	2579000	106100

Sample ID/Lot	PD, Monomer (Mw/Mn)	PD, HMW 1 (Mw/Mn)	PD, HMW 2 (Mw/Mn)	PD, LMW (Mw/Mn)
Thermal Control	1.000	1.001	1.097	1.105
Thermal T = 1 Day	1.000	1.005	1.051	1.043
Thermal T = 5 Days	1.000	1.009	1.090	1.033
Thermal T= 7 Days	1.000	1.005	1.107	1.011

- Thermal exposure displays a steady increase in HMW 2 species over the study
- Apparent increase in MW as well as polydispersity over 7 days at 50C seen in the HMW 2 peak

SEC-HPLC Chromatograms Showing **Acidic** Degradation of Cetuximab at pH 3 Over 3 Days

- Multimer species contains numerous variants due to acidic degradation
- Increase in fragment species (LMW 1, LMW 2) similar to thermal degradation

SEC-MALS Chromatograms & MW Data for Cetuximab Subjected to **Acidic** Degradation at pH 3 Over 3 Days

Sample ID/Lot	MW Monomer (avg), Da	MW HMW 1 (avg), Da	MW Multimer (avg), Da	MW LMW (avg), Da	
pH 3 Control	145800	282800	1114000	114800	
pH 3 T = 1 Day	145800	297500	836800	118900	
pH 3 T = 3 Day	145800	304300	879700	114200	

Sample ID/Lot PD, Mono (Mw/Mr		PD, HMW 1 (Mw/Mn)	PD, Multimer (Mw/Mn)	PD, LMW (Mw/Mn)
pH 3 Control	1.000	1.000	1.018	1.061
pH 3 T = 1 Day	1.000	1.002	1.009	1.016
pH 3 T = 3 Day	1.000	1.009	1.012	1.004

- Acidic conditions display a large increase in multimeric species after 1 day
- Multimeric species show an array of dispersity with MW/Mn of 1.013, with sufficient separation

SEC-HPLC Chromatograms (A₂₈₀) of Cetuximab Subjected to **UV** Degradation Over 15 Hours

• Growth in HMW 1 over the time course, different than either thermal or acidic degradation

Minimal, but apparent increase in fragments (LMW 1, LMW 2) after 10 hours of UV exposure

SEC-MALS Chromatograms & MW Data for Cetuximab Subjected to **UV** Degradation Over 15 Hours

Sample ID	MW Monomer (avg), Da	MW HMW 1 (avg), Da	MW HMW 2 (avg), Da	MW HMW 3 (avg), Da	MW LMW (avg), Da
UV Control	145800	285100	334500	1215000	118600
UV T = 5 hours	145800	287200	443400	1125000	118200
UV T = 10 hours	145800	288100	453800	1186000	116900
UV T= 15 hours	145800	286700	438500	1170000	113200

Sample ID	PD, Monomer (Mw/Mn)	PD, HMW 1 (Mw/Mn)	PD, HMW 2 (Mw/Mn)	PD, HMW 3 (Mw/Mn)	PD, LMW (Mw/Mn)
UV Control	1.000	1.001	1.006	1.017	1.035
UV T = 5 hours	1.000	1.000	1.001	1.030	1.024
UV T = 10 hours	1.000	1.000	1.052	1.032	1.024
UV T= 15 hours	1.000	1.000	1.001	1.017	1.013

- Numerous HMW species seen in light scattering profile, with milder degradation than thermal or acidic conditions
- Dimeric, trimeric & large multimeric species apparent in light scattering with increasing PD
 ©2025 Catalent, Inc. All rights reserved
 22

SV-AUC Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Days

- Substantial level of degradation seen
- Decrease in main peak with corresponding increase in aggregation, with many HMW species >30 S

		Cetuximab, thermal degradation					
	Time (Days)	Main Peak	HMW 1	HMW 2	нмw з	HMW 4	
Sedimentation	0	6.1	9.8	13.4	19.9	25.7	
Coefficient	1	6.1	10.6	15.6	22.2	30.6	
(Svedberg Units,	5	6.1	10.9	19.2	23.0	26.6	
S, sec x 10 ⁻¹³)	7	6.1	11.1	14.2	18.8	23.8	
	0	147	301	478	867	1273	
Molecular	1	147	334	598	1016	1649	
Weight (kDa)	5	146	353	819	1075	1336	
	7	146	360	520	792	1134	
	0	94.2	3.4	1.0	0.3	0.2	
%distribution	1	93.4	1.6	0.6	1.1	1.4	
(c(s))	5	86.8	1.5	0.4	0.4	0.5	
	7	86.4	0.3	0.2	1.0	0.4	

SV-AUC Analysis of Cetuximab Under **Photolytic** Degradation (UV Exposure) Over 15 Hours

- Similar level of degradation seen in UV exposure as thermal at 50C
- Again, decrease in main peak with corresponding increase in aggregation
- UV is a potent degradant in mAb's

	Cetuximab, UV degradation						
	Time (Hours)	Main Peak	HMW 1	HMW 2	нмw з	HMW 4	
Sedimentation Coefficient (Svedberg Units, S, sec x 10 ⁻¹³)	0	6.1	9.5	12.5	17.9	NA	
	5	6.1	9.3	12.0	17.5	NA	
	10	6.1	9.2	12.2	17.0	25.3	
	15	6.1	9.3	13.2	17.0	22.7	
Molecular Weight (kDa)	0	148	295	446	768	NA	
	5	148	282	413	731	NA	
	10	148	277	432	705	1279	
	15	149	288	481	702	1088	
%distribution (c(s))	0	92.5	4.6	1.6	1.3	NA	
	5	91.7	5.6	1.5	1.2	NA	
	10	86.9	9.0	2.1	1.4	0.7	
	15	83.2	11.8	1.8	1.9	1.0	

Dynamic Light Scattering Analysis of Cetuximab Under **Thermal, Basic** (pH 9) & **Acidic** (pH 3) Degradation Conditions

- Thermal degradation at 50C displays growth in overall size distribution of Cetuximab
- Base degradation (pH 9) is ineffective as a degradant
- Acidic degradation (pH 3) shows an increase in the radius, albeit in a slower fashion than thermal at 50C

Dynamic Light Scattering Analysis of Cetuximab Under UV, **Mechanical & Freeze/Thaw** Degradation Conditions

- Interestingly, UV, mechanical (shake), and freeze/thaw display little to no degradation over the time course
- Mechanical degradation by stirring (magnetic stir-bar) shows apparent degradation after 1 day and extreme increase in molecular radii at 4 days

Dynamic Light Scattering (Results)

Measurements							
Sample	Radius (nm)	PDI	Diameter (nm)				
No Stirring_control	7.1	0.068	14.1				
Stirring_1 day	22.2	0.199	44.4				
Stirring_4 days	52.4	0.374	104.8				

- Stirring causes the most degradation in terms of overall aggregation of the molecule
- Stirring, thermal, and acidic conditions impart a moderate increase in polydispersity (0.1-0.4 PDI) on Cetuximab

Measurements							
Sample Temp	Radius (nm)	PDI	Diameter (nm)				
Thermal_control	7.2	0.107	14.5				
Thermal_1 day	9.2	0.247	18.4				
Thermal_5 days	19.2	0.367	38.5				
Thermal_7 days	24.1	0.339	48.2				
Acid_pH3_control	8.0	0.285	16.1				
Acid_pH3_1 day	10.7	0.176	21.3				
Acid_pH3_4 days	12.2	0.296	24.4				

icIEF Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Days

- Large increase in acidic variants seen with thermal degradation
- Corresponding area losses seen in main peak and basic variants

icIEF Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Days (cont.)

Conditions of ~2-3 days at 50°C produce ~10-15% loss in main peak (sensitive to heat)

CEX Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Day

Large increase in acidic variants seen with thermal degradation, correlates with iCIEF

CEX Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Day (cont.)

Corresponding area losses seen in main peak and basic variants throughout time course

Reduced CE-SDS Analysis of Cetuximab Under Thermal Degradation at 50°C Over 7 Days

• Increase in HMW 1 over the time course, correlates with HMW 2 in SEC

Reduced CE-SDS Analysis of Cetuximab Under **Thermal** Degradation at 50°C Over 7 Days (cont.)

Area losses in HC with corresponding increase in HMW; LC remains consistent throughout study

Reduced CE-SDS Analysis of Cetuximab Under **UV** Degradation Over 15 Hours

Increase in HMW 1 along with HMW 2 species growth caused by UV exposure after 5 hours

Reduced CE-SDS Analysis of Cetuximab Under **UV** Degradation Over 15 Hours (cont.)

 Different degradation pathway seen in UV exposure as compared to thermal at 50C with HMW 2 species resolution

- Thermal & UV exposure led to significant degradation in aggregation assays (SEC, SV-AUC, CE-SDS)
- 2 Early aggregation is observed with dimeric and high MW species at 10-30% area
- 3 Acidic degradation results in numerous aggregates, as confirmed by SEC & SV-AUC
- 4 Charge-based assays (CEX & icIEF) show similar results, indicating orthogonality
- 5 Consistent correlation is noted between SEC, SV-AUC & CE-SDS
- 6 Magnetic stirring increases molecule diameter in DLS

Strategic Role of FD Studies in IND Applications & LCM

Manufacturability

- Optimize formulation & storage conditions
- Remove vulnerabilities such as aggregation or degradation triggers

Method Development & Validation

- Establish stability-indicating methods with full/limited FD panel assessments
- Validate & qualify methods for reliable performance

Critical Quality Attributes (CQAs)

- Assess molecule's structural integrity & functional activity
- Monitor to ensure product safety & efficacy

Lot-to-Lot Comparability

- Evaluate consistency through limited FD panel testing
- Detect variations early & maintain product quality

Early & consistent integration of forced degradation studies ensures robust method development, successful IND submissions & lifecycle management (LCM) of your molecule

AGENDA

Why Forced Degradation Matters 1) Major Degradation Pathways 2 Forced Deg Study: Cetuximab 3 Execution: Forced Degradation Results 4) **5** Your Molecule at Catalent **J&A**

What is Right for Your mAb, ADC, Fusion Protein?

Monitoring Critical Quality Attributes through QC-friendly methodologies

Catalent offers all the aforementioned technology plus

- LC-MS, chromatography, electrophoresis, cell-based and bioassay, etc.
 Full-scale stability offerings

Biophysical/Biochemical/Bioassay

- Approximately 200+ scientists
- Dedicated BioAnalytics technical lead and QA team
- 30+ years of providing exceptional customer experience

Discovering stability issues early means fewer surprises later

Follow us on **LinkedIn** to learn about new offerings and the latest and news!

SCHEDULE A MEETING FOR TAILORED DISCUSSIONS: Brent.Kennedy@catalent.com Blythe.Logan@catalent.com

more products. better treatments. reliably supplied.™