Coupling Mass Spectrometry (MS) with non-MS Assays for Automated Profiling of Antibody Impurities

Harsha Gunawardena

CASSS WCBP Conference 2025

Outline

- Need for speed and comprehensive characterization in pharmaceutical R&D
- Part 1: Proposed peak identification strategy: concepts and experiments
 - Non-MS-assays and peak detection a historical perspective
 - Developing mass/size calibration ruler: A case for forced trisulfide degradation products (that mimic bioreactor H₂S-induced mAb degradation)
 - Cathepsin D- and L-induced mAb clipping to mimic cell culture harvest conditions
 - High-pH Rituximab clipping to mimic structural instability under forced degradation
- Part 2: MS and non-MS Data Automation to couple Byosphere
 - Coupling RapidFire data with non-MS assays
 - Data analysis in the Byosphere pipeline
 - Automated analysis and reporting of Impurities
- Conclusions and Future directions

Multispecific Modalities Requires Faster and Comprehensive Characterization Workflows in Drug Discovery & Development

Analytical Assays Automation with Rapid Informatics Pipeline

E2E Automated Sample Preparation, Acquisition and Data Analysis

- 1. LIMS system supports the retrieval of samples
- 2. Automated protein A purification using robotics and robotic hand-off (Future state)
- 3. Non-MS Assays (i.e. Proteometer Trace Chromatograms)
- 4. Data severs storing data

J&J

- 5. Automated data sweep to Enterprise Byos Software with fully integrated intact MS Data-driven workflows
- 6. Automated export of results and joint reporting of modifications
- 7&8 Aggregate data with molecule information to build 'In-house' knowledge base (also auto QC)

Outline

Need for speed and comprehensive characterization in pharmaceutical R&D

Part 1: Proposed peak identification strategy: concepts and experiments

- Non-MS assays and peak detection a historical perspective
- Developing mass/size calibration ruler: A case for forced trisulfide degradation products (that mimic bioreactor H₂S-induced mAb degradation)
- Cathepsin D- and L-induced mAb clipping to mimic cell culture harvest conditions
- High-pH Rituximab clipping to mimic structural instability under forced degradation

Part 2: MS and non-MS Data Automation to couple Byosphere

- Coupling RapidFire data with non-MS assays
- Data analysis in the Byosphere pipeline
- Automated analysis and reporting of Impurities
- Conclusions and Future directions

The problem: peak detection of non-MS Assays

Estimating Molecular Weight by Mobility Calibration

- Molecular weight of proteins estimated by calibrating mobility with mass from SDS-PAGE (Zwan. 1966, *Anal. Biochem.)*
- Molecular weight of IgG clipping estimated by calibrating mobility with mass from CE-MS (Li et al., 2022, *J. Chromatography A.)*
- Molecular weight of unknown IgG impurities estimated by calibrating mobility using mass spectral library (Liu et al., 2023, *Scientific Reports*)) Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License: <u>https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en</u>.

A workflow for mAb impurity analysis combining electrophoretic separation and accurate assignment of masses

Simulating Bioprocessing Systems to Examine mAb Impurities

Monitoring Rituximab high-pH degradation products by GXII and CZE-MS

H₂S-induced degradation products of IgG as a GXII mobility ruler

GXII Electropherogram Analysis of NIST IgG1 Fragments

- x-axis time variance is important for the accuracy of size (kDa) estimation (Peak ID)
- Each second in GXII time is ~ 15 KDa in size

J&J

• GXII Calibration of higher masses is an extrapolation of low molecular weight markers

CZE-MS of NIST H₂S-Induced Degradation Products

GXII Electropherogram Analysis of NIST IgG1 Fragments

DE-004030

Peak Identification Strategy

Plot Mobility versus log10 of Molecular Weight (MW)

Simulating Bioprocessing Systems to Examine mAb Impurities

mAb Trisulfides and degradation in bioreactor settings

Monitoring NIST mAb H2S-Induced degradation products by GXII and CZE-MS

mAb Cathepsin degradation during cell culture

Monitoring NIST mAb Cathepsin degradation products by GXII and CZE-MS

mAb High-pH degradation during bioprocessing

Monitoring Rituximab high-pH degradation products by GXII and CZE-MS

Overlayed GXII-FLR Traces of Cathepsin D and L at Day 1 and Day2

Cathepsin-D and -L Cleavages of Light Chain

Peak Identification of Cathepsin-D, and -L Fragments

Unassigned Peaks in Cathepsin-D and -L Fragments

Minimization of Time Errors: An approach to increase Peak ID's

Annotated Peaks

DE-004030

Assigning Unassigned Peaks in Cathepsin-D and -L Fragments

pH3 Cathepsin L-Induced NIST IgG1 Light Chain AA and FI Clips

pH3 Cathepsin L CZE-MS Identification of Clips

Time (min)

pH3 Cathepsin L CZE-MS Deconvolution Mass of AA and FI Clips

MS1 Peak IDs of AA and FI Clip

pH7 Cathepsin L CZE-MS Exclusively Shows Light Chain FI Clip

Unambiguous MS2 Sequence Confirmation of FI Clip by CE-MS/MS

pH3 Cathepsin L CZE-MS/MS of Light Chain AA Clip

J&J • Unambiguous MS2 Sequence Confirmation of AA Clip by CE-MS/MS

pH3 Cathepsin L CZE-MS Identification FL Clip

Peak Assignment of pH3 Cathepsin L CZE-MS Identification FL Clip

pH3 Cathepsin L-Induced 47.6 Da, HT Clips

pH3 Cathepsin L CZE-MS of 47.6 kDa, Fragment due to HT Clip

Heavy Chain (H) Assignment is truly a Fab' generated via two HT Clips

Reassignment of Misidentified peaks 47.6 kDa, Fragment HT Clip

pH 5 Cathepsin D, CZE-MS Unidentified Peaks

Reassignment of Misidentified peaks 18 kDa, Fragment Pair

pH7 Cathepsin L CZE-MS of 105.9 kDa Fragment

(HH) Assignment is a mAb with truncated light chains via two SS Clips

J&J

Reassignment of Peak ID's via Minimization of Time Errors

Reassignment of Misidentified peaks Light Chain SS Clips

Overlayed GXII-FLR Traces of Cathepsin D and L Impurities

Simulating Bioprocessing Systems to Examine mAb Impurities

mAb Trisulfides and degradation in bioreactor settings

Monitoring NIST mAb H2S-Induced degradation products by GXII and CZE-MS

mAb Cathepsin degradation during cell culture

Monitoring NIST mAb Cathepsin degradation products by GXII and CZE-MS

mAb High-pH degradation during bioprocessing

Monitoring Rituximab high-pH degradation products by GXII and CZE-MS

pH 10 Ammonia-Induced Rituximab Light Chain Clip

Rituximab Light Chain has a NPP motif that is susceptible to NP-cleavage at high pH

Overlayed GXII-FLR Traces of Rituximab pH-Induced Forced Degradation

Identification of Rituximab pH-Induced Degradation Products

Agilent ExD cell for 6545XT AdvanceBio LC/Q-TOF

• Key Features

Enhanced ECD Efficiency

Synergy with 6545XT

ExDViewer Software

DE-004030

- ✓ Less time spent fine-tuning
- ✓ Greater applicability for:
 - Lower-abundance/impurities
 - Lower-charge cations
 - Difficult analytes

Outline

- Need for speed and comprehensive characterization in pharmaceutical R&D
- Part 1: Proposed peak identification strategy: concepts and experiments
 - Non-MS assays and peak detection a historical perspective
 - Developing mass/size calibration ruler: A case for forced trisulfide degradation products (that mimic bioreactor H₂S-induced mAb degradation)
 - Cathepsin D- and L-induced mAb clipping to mimic cell culture harvest conditions
 - High-pH Rituximab clipping to mimic structural instability under forced degradation
- Part 2: MS and non-MS Data Automation to couple Byosphere
 - Coupling RapidFire data with non-MS assays
 - Data analysis in the Byosphere pipeline
 - Automated analysis and reporting of Impurities
- Conclusions and Future directions

High-throughput MS data generation via RpidFire 360-6545XT Q/TOF

 A) 96-well plate of bsAb subjected intact MS analysis via RapidFire-MS, spectral deconvolution and data visualization as Byos plate report

B) Representative RAW mass spectrum and corresponding deconvoluted mass spectrum

Byosphere Traffic Light Reports to Examine RapidFire Plates

Byosphere Assay Automation of Non-MS with MS

- Byosphere pipeline process both MS and non-MS data (i.e., GXII)
- Workflow processes MS and non-MS workflows and creates projects
- A hands-free automated report generation
- Deep querying capabilities with metadata fields
- Dashboards to monitor QC data

Future Directions: Software Automation for GXII Peak Annotation

Conclusions and Future Directions

- We successfully demonstrate a radical approach to obtain accurate peak identifications for sizebased electrophoresis.
- We show the approach and its utility by applying to biopharmaceutical impurities.
- CZE-MS identifications greatly enhance GXII peaks assignment.
- We are currently exploring the integration RapidFire-MS for peak identification of non-MS assays we automated comprehensive impurity library generation.
- We envision that software automation will enable seamless peak identification of non-MS assays.
- Potential to add Alternative Fragmentation ECD faster ID of unknowns.
- Consider a similar approach with downstream Development enhance MW accuracy and ID of impurities in QC, updating calibration curves in QC.

Acknowledgements

Biophysics Separations Team

- Caleen Dayaratna
- Ben Negron
- Kristen Nields
- Megan Sharma
- Bob Hepler

MS Characterization Team

- Partha Chowdhury
- Hirsh Nanda
- Elsa Gorre
- Andrew Mahan
- Achutha Madhankumar
- Michael Poltash
- Chris Sauer
- Weija Tang
- Tacora Yeargins
- Bo Zhai
- Eric Beil

- Gihoon Lee
- Joshua Justice
- Javier Gomez

Discovery Chemistry

Mark Wall

Agilent Technologies

- John Sausen
- Jim Lau
- Mike Knierman
- Chris Klein
- Wayne Heacock

- James Xia
- Quan Liu
- Jiaying Hong
- Yukun Zhang
- Qiuyue Wang

PROTEIN METRICS

- Eric Carlson
- Marshall Bern
- Alex Zhai
- Steve Cypes

DE-004030

Ilker Sen