

Considerations for Developing an Autoinjector Control Strategy: A Case Study

Kristin Benokraitis January 2025

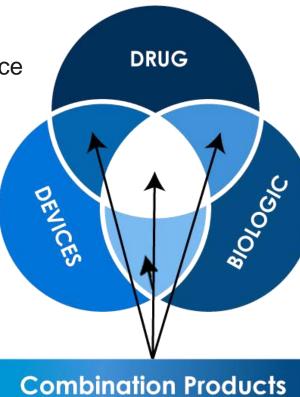
- Kristin Benokraitis
- Head of RegCMC Device and Combination Products at Biogen
- 20+ years in medtech/biotech industry
- Contact: <u>Kristin.Benokraitis@biogen.com</u>

Overview

- What is a combination product?
- Development framework comparison
- CQAs and Essential Drug Delivery Outputs (EDDO)
- Control strategies for combination products
- Case study example

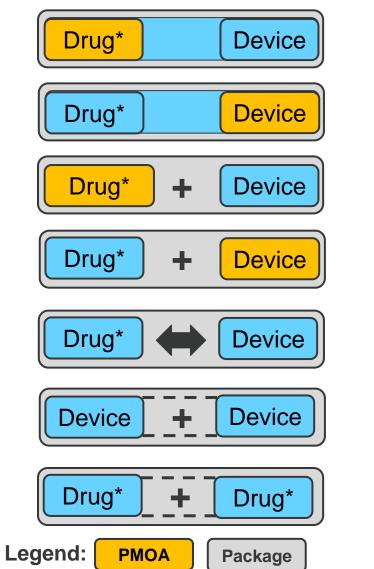
Combination Products

What are they and development framework comparison



Combination Products

What?


Why?

- Combines two or more different constituents (drug, device or biologic)
- Regulatory definition varies by region/country; driven by the Primary Mode of Action (PMOA)
- Enhances therapeutic efficacy, safety and/or patient (user) convenience
- Growing demand for personalized medicine and self-administration
- Market differentiation (innovative in delivery systems)

Combined Products

US

EU

00		
Combination Product Single-entity, CD/BER (+CDRH)	Integral drug-device combination	
Combination Product Single-entity, CDRH (+CD/BER)	Medical device with ancillary substance	
Combination Product Pkg together, CD/BER (+CDRH)	Medicinal product; Medical device	
Combination Product Pkg together, CDRH (+CD/BER)	Medical device; Medicinal product	
Combination Product Cross-label, CD/BER +CDRH	Medicinal product; Medical device	
Convenience Kit	Procedure/System Pack	
Fixed Dose Combination Product	Medicinal product(s)	
	Chipperfield and Cheswor	

Chipperfield and Chesworth, Regulatory Rapporteur – Vol 15, No 5, 2018 (modified)

* Could be drug or biologic in this context

Development Framework Comparison

Biologic/Drug Constituent

- Quality by Design
- Design space based on process (inputs/parameters) as a function of impact on CQAs
- Impact of variability from product manufacturing (PROCESS)

Device Constituent

- Design Controls
- Design space based on physical aspects as a function of impact on device performance
- Impact of variability from physical and mechanical attributes (DESIGN)

Combination Products merge these concepts for an integrated approach to meet regulatory requirements

PDA Combination Product Development & Regulatory Best Practices: Drug/Biologic PMOA Perspective (modified); Suzette Roan; Mar 2019

CQAs vs. EDDOs

CQA Identification

- CQAs are identified based on the severity of impact on quality, safety and efficacy resulting from failure to meet that quality attribute
 - Identified before taking controls into account
 - May change as a result of further product knowledge during development

QbD process applies risk-based identification of potential CQAs and is coupled with quality risk management to develop the control strategy

Essential Drug Delivery Output (EDDO)

- By definition, EDDOs are design outputs necessary to ensure delivery of the intended drug dose to the intended delivery site
- These function-based EDDOs, similar to CQAs, feed into a risk-based control strategy (through Design Controls)
- Certain (drug) CQAs may be applicable for the device constituent of combination products

Examples of potential CQAs for device (delivery systems)

- aerodynamic properties for inhaled products
- sterility for parenterals
- adhesion properties for transdermal patches

Example: Is it an Autoinjector EDDO?

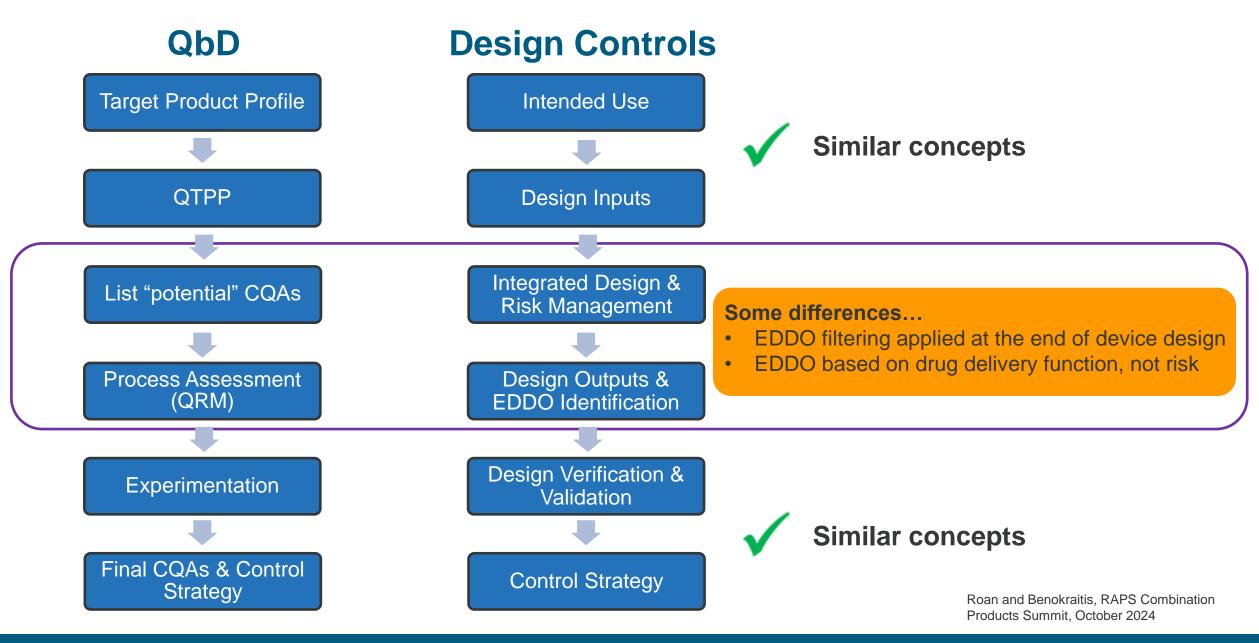
Yes

- Extended Needle Length
 - Ensures the needle is at the right depth and is dependent on the device

Injection Time

 Ensures the drug is delivered to the intended space within the appropriate time and is dependent on the device not the user

No


Needle Length (PFS*)

- It is a component level output because it influences but is subordinate to the extended needle length function

Breakloose / Glide Force (PFS*)

- It is a component level output because it influences but is subordinate to the injection time function
- * Prefilled Syringe is the primary container

Control Strategies for Combination Products

13

When developing a control strategy for an EDDO, it is important to consider the attributes and manufacturing process steps that can influence the EDDO, and describe why these attributes or process steps are the only ones that influence the EDDO.

Essential Drug Delivery Outputs for Devices Intended to Deliver Drugs and Biological Products, Draft Guidance for Industry

Control Strategy: Types of Controls

- Design controls
- Purchasing/supplier controls
- Manufacturing controls
 - Upstream controls (incoming, in-process testing, etc)
 - Downstream controls (release testing)

A control strategy is used to ensure that the final finished combination product maintains its EDDO(s)

The type and number of controls implemented should correspond with product risk

Control Strategy ... Strategy

- What design characterization/testing has been conducted?
- Why are the controls the right controls?
- Are the controls placed at the right point?
- Why is the acceptance criteria appropriate?

(Theoretical Example) Controls for Activation Force (EDDO)

Control Strategy "Approach A"

- Spring wire incoming inspection (COA)
- Spring coiling process validated
- In-process control (IPC) test at supplier for spring coiling process
- Autoinjector sub-assembly release testing for spring compression force at supplier

• etc

Control Strategy "Approach B"

Final lot release testing for Activation
 Force of finished product

OR

Case Study: Autoinjector

Case Study (Example): Autoinjector Control Strategy

- Company XYZ is developing an Autoinjector for delivery of a novel drug
 - To be used in an upcoming Phase 3 study
 - Planned as a commercial device presentation for ease of use by patients
 - Intended for emergency use
- Elements involved in the design and process:
 - **Components:** provided by suppliers for the primary container and Autoinjector subassemblies
 - Manufacturing the primary container (PFS): filling and stoppering the syringes with drug
 - Assembly of the Autoinjector: enclosing the PFS into the Autoinjector subassemblies
 - Final label and pack: labeling and packaging of the finished product

Step 1: Identify EDDOs

Identified EDDO*	Functioning "Step"	Why?	
Dose Accuracy	Delivery of intended dose	The automated dose delivery is necessary to ensure appropriate drug delivery.	
Extended Needle Length	Delivery to the target site	It ensures the needle is at the right depth and is dependent on the device.	
Cap Removal Force	Product preparation	Cap removal in emergency use case needs to be completed before the injection can be administered and it is dependent on the device.	
Activation Force	Initiation of dose delivery	It initiates drug delivery and is dependent on the device not the user.	
None identified	Dose delivery progression	N/A	
Injection Time	Dose delivery completion	It ensures the drug is delivered to the intended space within the appropriate time and is dependent on the device not the user.	

*As noted in FDA draft guidance, depending on the design and use, there may be alternate or additional EDDOs

Step 2: Identify attributes and process steps which may impact EDDOs

Identified EDDO	Influencing attributes and manufacturing process steps		
Dose Accuracy	 PFS component dimensions Fill/finish process and stopper position Insertion/placement of PFS in autoinjector subassembly 		
Extended Needle Length	 Needle/PFS component dimensions Insertion/placement of PFS in autoinjector subassembly 		
Cap Removal Force	Cap/PFS component dimensions		
Activation Force	 Interaction of autoinjector subassemblies (dimensions, assembly, etc) 		
Injection Time	Spring component force specificationBreak loose and glide force (PFS)		

Step 3: Assess design, risk and process characterization

- Purchasing Agreements with critical component suppliers
- Tolerance stack analysis of (dimensional) attributes influencing EDDOs
- Design verification testing
- Identify upstream / downstream controls
 - The number and type of controls implemented should correspond with risk
 - Understand and justify if any downstream processes do not impact EDDOs

Step 4: Control Strategy for Clinical (Development)

	Upstream Controls		Downstream Controls	
	Purchased Components	Drug Product (Fill/Finish)	Autoinjector Assembly	Labeling & Packaging
Dose Accuracy	 CoC empty syringes and plunger stoppers 	 IPC: extractable volume and stopper position Release testing: expelled volume (PFS) 	 Release testing: injection indicator (plunger rod position) 	 Release by final manufacturer made based on upstream testing (PFS, assembled autoinjector, etc). Justification for why attribute is not impacted by labeling and packaging processes.
Extended Needle Length	 CoC functionality visual inspection 	 Justification for why attribute is not impacted by this process 	 Release testing: extended needle length 	
Cap Removal Force	 CoC for autoinjector subassembly 	 Justification for why attribute is not impacted by this process 	 Justification for why attribute is not impacted by this process 	
Activation Force	 CoC for autoinjector subassembly 	 Justification for why attribute is not impacted by this process 	 Justification for why attribute is not impacted by this process 	
Injection Time	 CoC empty syringes and plunger stoppers In-process testing of spring compression 	Release testing: DP concentration	 Release testing: injection time 	

*As noted in FDA draft guidance, depending on the design and use, there may be alternate or additional EDDOs and controls necessary

What if...

- There is prior knowledge (i.e.; device is the same design/technology used for other products within company's portfolio)
- Potential control strategy changes between clinical and commercial
 - Is the manufacturing process changing?
 - Is there additional characterization testing (across lots)?
 - etc

Key Takeaways

- Development frameworks for drugs and devices have similarities, but also differences
- EDDOs are based on drug-delivery function, not risk
- EDDO controls ensure the product meets the device drug-delivery function quality standards
- Number and types of controls implemented should correspond with risk

