Potency Assays for ATMPs – Selection of Assay Platforms and Data Processing Methods are Key Aspects for Successful Control Strategies

Jeff Patrick, PhD: Sr Director Operations – CMC Bioanalytical, BioAgilytix Shiqian Zhu, PhD: Director Operations – CMC Bioanalytical, BioAgilytix

Part 1: PCR, immunoassays, and flow cytometry as key components to the control strategies of ATMPs

Learning Objectives

Summary

- Understand the analytical control strategy for ATMPs
- Discuss techniques applied to the control of ATMPs and how they are utilized; flow cytometry, ddPCR, qPCR, and immunoassays (including ELISA and MSD)
- Phase appropriate considerations for method utilization and qualification
- Understand the significance of potency assays in control strategies and the regulatory expectations for gene therapies
- Discuss example case studies to demonstrate the analytical technologies and approaches applied to potency assay development for gene therapies

Advanced Therapy Medicinal Products (ATMPs): Gene and Cell Therapies (GCT)

What is a CMC Analytical Control Strategy?

CMC – Chemistry, Manufacturing and Controls

- Section of regulatory filing: analytical testing is the controls aspects
- Characterization, tests and specifications designed to assure SISPQ (Safety, Identity, Strength, Purity and Quality) for a product or substance
- Addresses and monitors CQAs (critical quality attributes)
- Contains "control strategy" which is typically 10's of tests driven by: required safety, manufacturing process, formulation and matrix, drug properties, and development data
 - A combination of GMP and characterization assays, combination of PAT and release tests

What Drives a Control Strategy?

Development Phase, CQAs, and SISPQ

Clinical Phase of Development

The phase of development will affect the rigor and demands of the assays and the dimensions of the control strategy as the processes, methods, and product evolve

SISPQ: Safety, Identity, Strength, Purity and Quality

The guiding principles and foundation of the cGMP control and monitoring of a drug substance/API or drug product

CQA: Critical Quality Attribute

"Physical, chemical, biological, or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality"

- ICH Guideline Pharmaceutical Development Q8(R2)

Challenges to CMC from ATMPs

Complex and Multiple MOAs

- Matrix approach (multiple assays)
- Functional assay (close as possible to the MOAs)
- Required to be quantitative and stability indicating
- MOA characterization (does not need to be GMP as not part of the control system)

Complex Assay Procedure

- Additional procedural steps and additional critical reagents
- Larger specifications on target titer/co

Reference Standard

• Well-characterized, qualified and stored appropriately

High Degree of Variability Between Batches

• Changes in process, scale-up, raw materials, plasmid, promoter, vector, etc.

Limited Lot Size/Limited Material for Testing – Small Batches

- Variability in starting batches
- Limited lot size/lack of appropriate reference materials
- Increase in comparability studies

Control Strategy for a pDNA or mRNA (LNP) Product

Control Strategy for an AAV

What Might be in a Control Strategy for an AAV ("SISPQ")

	<u>Test</u>		<u>Test</u>
Strength	Vector Titer	Potenc	y Infectious Titer
Identity	GOI Sequence	Potenc	y Particle to infectivity ratio
Strength	Gene expression	Potenc	y Transgene Expression
Identity	Pro-viral Sequencing (DNA sequencing)	Potenc	y Enzymatic Activity; Relative Potency
Strength	Virus/Capsid titer	Potenc	y Stability (long term; short term)
Physical	Capsid Occupancy or Empty/Full Evaluation	Potenc	Relative Potency (cell culture/vector transduction / ELISA)
			Relative %CAR Expression (cell culture/vector transduction/flow
Physical	Osmolality	Potenc	y Cytometry)
Physical	pH	Potenc	y Infectious Titer (transduction/cell culture/qPCR)
Physical	Aggregates		
Physical	Appearance		
		Safety	Replication-Competent Virus
Purity	Process-related impurities: Benzonase, Resins, etc.	Safety	Adventious Viruses
Purity	Plasmid Purity	Safety	Endotoxins
Purity	Expressed Purity	Safety	Mycoplasma
Purity	Residual Plasmid DNA	Safety	Adventitious Viruses: Adeno-Associated Virus (qPCR)
Purity	Residual HC-DNA (SV40 T-Ag, E1A)	Safety	Replication Competent Lentivirus
Purity	Residual HCP	Safety	RCL (EOP) End of Product
Purity	Other Residual Proteins/DNA	Safety	Adventitious Viruses: In Vitro Adventitious Agents (cell culture)
Purity	Residual Genomic DNA (qPCR)	Safety	Viral Safety Testing (Cell therapies)
Purity	p24 Concentration (ELISA)	Safety	Bovine Polyoma virus
Purity	Pluronic, Tween, Triton	Safety	Bovine viral contaminants
Purity	Residual Benzonase		

Common Techniques for CMC Testing of AAV (GCT/ATMP)

Protein Simple Maurice

Bio-Rad QX200 and QXOne Droplet Digital PCR Systems

Flow Cytometry

Thermo Scientific Orbitrap Exploris

- Empty/Full Capsid
- Glycoform Analysis
- Protein Purity
- Reagent Characterization

- Vector Copy Number
- Relative Potency
- Gene Expression
- Residual Plasmid
- Host Cell DNA
- MOA Identification

- Cell attributes
- Gene Expression
- Cell activity
- Receptor biding/expression
- Multi-parameter analysis
- Reagent Characterization

- LCMS Peptide Map
- Glycoform and PTM Characterization
- Impurity ID and Identity
- Capsid Characterization
- Reagent Characterization
- Potency Readout

Quantitative Strategy for Cell Therapies

Cellular Kinetics, Persistence

Hays et al. Int. J. Mol. Sci. 2023; 24, 695.

Flow Cytometry

Flow Cytometry – Platform Basics

Advantages of Flow Cytometry Over Cell-based Assays

1. High-Throughput: Flow cytometry allows for the rapid analysis of a large number of cells

2. Multiparametric Analysis: Flow cytometry allows for the simultaneous measurement of multiple parameters in a single experiment and provides a more comprehensive understanding of cellular characteristics compared to some cell-based assays

3. Quantitative Measurements: Flow cytometry provides quantitative data for multiple attributes.

4. Cell Sorting Capability: Flow cytometers equipped with cell sorting capabilities can isolate specific cell populations based on their characteristics.

5. Single-Cell Analysis: Flow cytometry can analyze and sort individual cells, enabling the study of cellular heterogeneity within a population

6. Real-Time Analysis: Flow cytometry provides real-time data acquisition allowing analysis of fast kinetics, transient changes, or dynamic interactions within a cell population.

7. Automated Data Analysis: Flow cytometry data analysis can be automated, facilitating the handling of large datasets using a range of software tools.

8. Transferability: The movement or transfer of experiments between instruments or even between platforms is relatively robust.

9. Flexibility: All the above attributes makes flow a highly flexible and adaptable technique amenable to cell-based determination.

Adeno-Associated Virus (AAV)

MOA: AAV3 Capsid that contains a single-stranded DNA genome carrying a gene

• Protein replacement therapy

Functional Flow Cytometry Assay:

- Flow cytometry provides quantitative data, allowing for accurate measurements of cellular features, such as protein expression levels, cell cycle distribution, and apoptosis. This is particularly useful when precise quantification is required for experimental analysis.
- Assay development/Optimization challenges:
 - Sourcing critical reagents
 - KO vs WT cells
 - Custom antibodies

Assay Lifecycle Challenges:

- Long-term stability of custom critical reagents
- Bridging of new lots of critical reagents

Representative Data

WT Cells, 200 uM Stimulant X

KO Cells, 200 uM Stimulant X

Note - Begin with 8-point curve for practical reasons... not optimal... end with 12

Snapshot for Assay (Phase I) - CAR-NK

Background:

Modality – Irradiated uAPC cells (CAR-NK therapy)

MOA – Ki67 is absent in resting cells (G0) but present in all active phases of the cell cycle.

Cells – irradiated uAPC and non-irradiated K562 Readout – Flow cytometry to demonstrate the lack of proliferation in irradiated uAPC cells over time

Description of Assay:

This procedure demonstrates the lack of Ki67 staining in the nucleus of irradiated uAPC cells compared to the control non-irradiated K562 cells cultured simultaneously over a period of 21 days.

%CD146

Specificity: STRO-4 and CD146 isotype antibodies generated a response similar to unstained cells demonstrating specificity

BioAgilytix 🐲 ©2024, BioAgilytix.

Snapshot for Assay (Phase I) - MPC

Background:

Modality – Mesenchymal Precursor cells (MPC) Cells – Bone marrow derived MPC Readout – **Flow cytometry** to demonstrate positive STRO4 and CD146 expression, with low CD31, CD45, CD80, CD85, HLA-DR expression.

Description of Assay:

This procedure demonstrates the high expression of positive markers STRO4 and CD146 on MPC cells while control Jurkat cells display high expression of CD31 and CD45 and control Raji cells express CD45, CD80, CD86, and HLA-DR, which are all negative markers for MPC cells.

ddPCR and qPCR

The Technology Platforms

	dPCR	qPCR
Quantitative (with standard curve)	+	+
Absolute quantitation	+	-
Susceptible to interferents/inhibitors	low	variable/high
Multiplex capable	+/++	++
Sensitivity	++	++
Precision for rare events	++	+
Reverse transcriptase-incorporated workflow	+	+
Cost of instrumentation	\$\$\$	\$/\$\$
Cost of reagents/consumables	\$\$\$	\$\$
Average run throughput	5h	1.5h
Reactions per plate	96	96/384

ddPCR vs qPCR

Aliquot partitioned into droplets with PCR occurring in each. Many opportunities to detect target DNA.

Aliquot has one PCR performed. One opportunity to detect target DNA.

BioAgilytix 😻 ©2024, BioAgilytix.

22

Molecular Applications in Cell Therapy Drug Development

Chemistry, Manufacturing, and

Controls (CMC)

- Vector Copy Number (VCN)
- Replication Competent Lenti/Retrovirus (RCL/RCR)
- Adventitious agents
- Residual plasmid
- Host cell DNA
- Potency

Currently >30 potency or other assays at various stages of development

Applications of ddPCR vs qPCR

Rare mutation detection Copy number variation analysis Gene expression analysis miRNA expression analysis Microbial pathogen detection Viral load quantification Liquid biopsy GMO detection Genome edit detection NGS library quantification and validation Residual host cell quantification

BioAgilytix 🐲 ©2024, BioAgilytix.

Vector Copy Number Determination

Linearized Plasmid xxx

BioAgilytix 談

- How many copies of plasmid in the viral vector?
- Are all active genes balanced?
- How is this determined?
- Design and optimize primer/probe sets
- Test with naked plasmid and then AAV viral vector

Vector Copy Number Determination

Create primer/probe sets and screen

Optimize the concentration of primer/probe

Evaluate linearity of response to plasmid

©2024. BioAgilvtix.

BioAgilytix 👹

26

Trace Analysis and Immunoassays

MSD (Meso Scale Discovery)

Sample Assay

MSD-ECL Imager 600

MSD SQ120 Quickplex

How do we leverage MSD capabilities?

- Sensitivity
- Dynamic range
- **Custom compatibilities**
- Multiplex capabilities
- Off-the-shelf "Plex" panels (developed for biomarkers but useful to CMC applications)

MSD Utilization in HCP Analysis

Modality – fusion protein

MOA (drug) – toxin fragments are delivered to cells to inhibit protein synthesis

Readout – MSD ELISA measuring the amount of process related impurities (Host Cell Proteins, HCP) present in samples, measured by luminescence

ELISA Approach to HCP Detection

Advantages of MSD approach:

- Broad dynamic range (perform fewer dilutions)
- High sensitivity to preserve material (low volumes available here)
- Robust method (Phase III validated)

Limitations:

Uniquely MSD

Summary

Reviewed tools used in the control of ATMPs:

- Flow Cytometry
- PCR ddPCR and qPCR
- Immunoassays by MSD

Some are familiar tools from protein biopharmaceuticals applied to the control of ATMPs

Tools from other analytical disciplines (molecular) are becoming common and powerful in CMC control strategies

They have their strengths and opportunities

Part 2: Potency assays for ATMPs – effectiveness as part of your control strategy

Learning Objectives

Summary

- Understand how potency assays fit in the control strategy and regulatory expectations for gene therapies
- Review the different analytical technologies needed to assess the potency of gene therapies
- Discuss example case studies of potency assay development for gene therapies

Potency Assays for Gene Therapy

BioAgilytix 😻 ©2024, BioAgilytix.

Potency Assay Expectations

Key takeaways from regulatory guidance

Reflective of MOAs, activity, and/or intended biological effect	Quantitative, and feasible for a QC laboratory	Meet pre-defined acceptance and/or rejection criteria
Demonstrate lot to lot consistency and stability	Include appropriate reference material, standards/controls	Validated for linearity/range, accuracy, precision, specificity, sensitivity, and robustness

ATMP "Potency" Assays: Matrix Approach

A single assay is not achievable:

•There are multiple therapeutic genes involved (delivered in one or more vectors).

•There are multiple pathways affected by a therapeutic gene and each pathway is UNIQUELY required by the MOA.

Monitoring multiple attributes is needed:

•For a single therapeutic gene, if a single assay could not meet all expectations for potency test, multiple attributes of this single therapeutic gene need to be monitored (esp in early phases).

Often phase-selective

Often directed by discussion with the Agency

Always dictated by Safety and Science

Potency – Matrix Approach

ASSAY	DEMONSTRATES	EXAMPLE ASSAY FORMATS
Infectivity	Demonstrate that there is successful delivery of the transgene to the target cells	Viral Titer, Infectious Titer, qPCR/ddPCR, Flow Cytometry
Expression	Demonstrate the presence of expressed genes and proteins	qPCR, ddPCR, Western Blot, ELISA, MSD, Flow Cytometry, LCMS
Activity/Functional	Demonstrate that the genes and/or proteins expression are functional and generate the intended response	Highly dependent on the functionality of transgene product and final readout. Enzymatic, Cytotoxicity Assay, Proliferation Assay, ELISA, Flow Cytometry

Case Study #1 Oncolytic Virus - Early Phase

CASE STUDY 1 Background Information

MOA: Oncolytic Virus, lysis of cancer cells and upregulation of immune response

Infectivity and Potency (EC50) Assay:

- Infectious Titer, TCID50 cytopathic effects
- EC50 by cell viability absorbance readout
- Assay development/optimization challenges:
 - Subjective
 - No quantitative control
 - High variability

38

CASE STUDY 1 Product Change

The drug product (still in preclinical/Phase I) was modified after initial method development to be at 1/30 of the effective concentration.

Resulted in:

- Minor changes in TCID50/EC50 assay (sample prep; see results right)
- Changes to sample prep for identity/strength assay
- In addition to changes to assays there were also adjustments to acceptance criteria and preliminary specifications to be considered.

Summary:

- Simple assays for very early (IND) phase
- High variability for most
- Adapted for formulation/product change

Case Study #2 AAV - Progression into Phase II

CASE STUDY 2

Functional Assay Using Flow Cytometry

MOA: AAV carrying one transgene. Protein Replacement Therapy.

Potency Assay Matrix:

- Expression at mRNA level (qPCR)
- Expression at protein Level (Western Blot)
- Functional Assay (Flow Cytometry)

©2024. BioAgilvtix.

Assay Challenges:

• KO vs WT cells

BioAgilytix 👹

• Critical reagents

CASE STUDY 2 Functional Assay Using In-Cell ELISA

MOA: AAV carrying one transgene. Protein Replacement Therapy.

Target Protein and Cells

Target Protein

BioAgilytix 🐲

Alexa 488/Hoechst

Case Study #3 Nanoparticle Containing Plasmid DNA -Moving to Phase III

CASE STUDY 3 Background Information

MOA:

DS: plasmid DNA carrying three genes

DP: nanoparticles of a polymer excipient and DNA plasmid API, and further coated with a copolymer

BioAgilytix 😻 ©2024, BioAgilytix.

For Gene 1 and 2:

- Expression (RT-ddPCR, duplex method, 2 reportable results)
- Functional (ELISA, for Protein X)

For Gene 3:

- Expression (ELISA, for Protein Y)
- Functional (Colorimetric enzyme assay, for protein Z)

SUMMARY:

- 3 Transgenes
- 2 Expression Assays (3 results)
- 2 Functional Assays
- 3 Cell Lines
- DS transductions are different procedurally than DP transduction.

8 Assays, 10 reportable results

Assay Challenges:

- Expression level of Gene 1 and 2 are different
- DS and DP have different behaviors (transduction)
- Variance is HIGHER with DP than DS in some assays
- Assays still require evolution including adaptation to final product and to reduce variance

Potency estimation

Relative potency	130% NDC	Reference		
Potency ratio 95% Confidence interval Relative confidence interval	1.33220 1.27144 - 1.40414 95.44% - 105.40% (9.96%)			
EC 50				
Estimated EC50 value	115.03345	129.51310		

Graphics

Case Study #4 mRNA in LNP_Early Phase Screening

CASE STUDY 4 Vaccine Development

MOA: mRNA in Lipid Nanoparticles

CASE STUDY 4 Pilot Study Results

MOA: mRNA in Lipid Nanoparticles

Housekeeping - H

Housekeeping

High

Low

Conclusions

Highlights and recommendations for gene therapy potency assay

Get started early and explore options	Leverage guidance documents and time with regulators	Select analytical technologies based on MOA
Matrix approach offers solutions but also challenges	Take phase appropriate approach	Changes will happen and assays must evolve

Acknowledgements

- BioAgilytix CMC Bioanalytical Team
- Jeff Patrick, PhD, Sr. Director
- Jessica Weaver, MS, Associated Director
- Bhoomi Jani, PhD, Manager
- Katie Harcher, MS, Manager
- Leigh Laundon, PhD, Scientist
- Neal Englert, PhD, Scientist
- Reema Davis, PhD, Manager
- Pam Prihoda, Scientist
- Lynn Kamen, PhD, Scientific Officer

Questions?

Thank You!

Jeff Patrick, PhD Sr Director Operations – CMC Bioanalytical, BioAgilytix

Shiqian Zhu, PhD Director Operations – CMC Bioanalytical, BioAgilytix

X Twitter.com/bioagilytix

YouTube bioagilytix4402

SUBSCRIBE TO OUR NEWSLETTER

