

Untangling the Complexity within Oligonucleotide Therapeutics

WCBP 2024

25-January-2024 Jace W. Jones, Ph.D. Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland

The use of mass spectrometry to determine oligonucleotide structure

https://www.futuremedicine.com/doi/10.2217/nmt-2018-0037

Frederick S. Brundick/cc-2.0/https://flic.kr/p/29umt8b

The use of mass spectrometry to determine lipid structure and abundance

Phospholipid Oxidation Susceptibility Following Lipid Peroxidation

https://biologydictionary.net/ lipid-bilayer/

Frederick S. Brundick/cc-2.0/https://flic.kr/p/29umt8b

The use of mass spectrometry to determine oligonucleotide structure

Oligonucleotide Therapeutics

https://www.futuremedicine.com/doi/10.2217/nmt-2018-0037

Frederick S. Brundick/cc-2.0/https://flic.kr/p/29umt8b

Chemical Synthesis of Oligonucleotides

Phosphorthioate (PS)

DMTO

Θo

Ð S

NH₄

Figure 2. Sites for modification on a dinucleotide subunit.

Wan and Seth. J Med Chem. 2016 Nov 10;59(21):9645-9667.

Use of Mass Spec is Complementary to NMR Structural Fingerprinting

Becette et al., Nucleic Acid Therapeutics, 2022

Use of Mass Spec to detect OGN Impurities

600

400

200

600

400

200

0 🌌

5500

Intensity

0

5500

Intensity

A Tran et al *JASMS*. 2021 Sep 1;32(9):2322-2333. A Tran et al *JASMS*. 2021 Jan 6;32(1):289-300.

0.0 mg/mL LiCl

Sense 5' $G_s - C_s - A_f - {}^FU - A_f - G_m - C_f - A_m - C_f - {}^FU - G_f - {}^FU - C_m - G_s - dT_s - dT 3'$ 3' $dT - dT_s - C_s - G_f - U_m - A_f - U_m - C_f - G_m - U_f - G_m - A_f - C_m - A_f - A_m - G_s - C_s 5'$ Anti-Sense A = adenosine C = cytidine G = guanosine U = uridine dT = deoxythymidine

Multidimensional Approach to Characterize the Diastereomers of OGN

Phosphorothioate (PS) linkages

- PS linkage confers nuclease resistance and enhances protein binding
- PS linkage introduces chiral center
- Creates 2ⁿ diastereomers (n is the number of PS linkages)
- A 20-mer potentially yields 2¹⁹ (524,288) possible stereoisomers
- PS stereoisomer mixtures potentially alter the pharmacological effects
- Adversely impact active ingredient sameness and bioequivalence

Reference Listed Drug (RLD)

- TEGSEDI (inotersen)
 - Used to treat polyneuropathy (nerve disease) of hereditary transthyretin-mediated amyloidosis
 - 20-mer Antisense Oligonucleotide (ASO)
 - FDA approved 2018 (first-in-class medication)

Key Objective:

 To develop a high-resolution analytical method for sensitive and robust determination of diastereomer composition in PS OGNs

Approach

- Chemical synthesis of inotersen using different chemistries and computational integration of LC, MS, and NMR data
- Chemical synthesis (Fletcher Lab)
- Analytical Chemistry (LC, MS, NMR) (Jones and Brinson Labs)
- Computational Integration (Cummings Lab)

Outcome

 Establish PS diastereomer composition as a well-defined chemical marker for ASO quality control

Synthesis and Product Characterization

Diastereomer Composition Characterization

Synthesis and Product Characterization

Inotersen:

- Synthetic 20-mer ASO, all PS linkages (19)
- 2'-MOE modifications at positions 1–5 and 15–20
- All C modified with 5-methyl group
- T*^MC*T*T*G*G*T*T*A*^MC*A*T*G*A*A*A*T*^MC*^MC*^MC
- Synthesize in-house to control chemistry (choice of activator)
- n=3 per sequence

Sequence #	Oligo length	Activator	# of PS linkages	# of potential Diastereomers
Sequence 1	2-mer	DCI	1	2
	5-mer		4	16
	10-mer		9	512
	15-mer		14	16384
	20-mer		19	524288
Sequence 2	2-mer	ETT	1	2
	5-mer		4	16
	10-mer		9	512
	15-mer		14	16384
	20-mer		19	524288

Note, additional sequences including RLD and other sequences were purchased from vendors.

DCI: 4,5-dicyanoimidazole ETT: 5-(ethylthio)-1H-tetrazole

Steven Fletcher, Ph.D. UMB SOP

In-house Synthesis

Liquid Chromatography: Analytical Separations

CC)

Collaboration with Agilent (Graham Robinett)

• 1290 Infinity Bio LC System

OGNs interact with the stationary phase on which ion-pairing reagents are adsorbed and result is chromatographic separation

Dibutylamine (DBA)

н

Correlation between alkyl amine retention time and the concentration of acetonitrile (20-mer)

In-house 2-mer IP-RP chromatography

Note, SPE clean-up includes TFA to cleave DMT group

In-house 2-mer IP-RP chromatography: Comparison of PO and PS linkages

Column Used: Agilent Poroshell 120 EC-C18, 1.9 µm 2.1 x 100mm Temperature of column: 30°C Mobile Phase A: 0.015 M TEA in Water Mobile Phase B: 0.015 M TEA 100% ACN

IP-RP Diastereomer Separation and NMR Confirmation

IP-RP separation of 5-mer

IP-RP chromatography of 5-mer: comparison of PO and PS

5-mer: Diastereomer Evaluation via IP-RP and NMR

Ion Pair Reagent and Temperature Effect Chromatographic Separation

5-mer (Vendor) MOEA*MOET*MOEC*MOEC*MOEC

PS linkages = 4 Diastereomers = 16

IP RP of 5-mer (In-house synthesis, ETT)

5-mer (in-house ETT) MOEA*MOET*MOEC*MOEC*MOEC

IP RP of 5-mer (In-house synthesis, DCI)

5-mer (in-house DCI) MOEA*MOET*MOEC*MOEC*MOEC

IP-RP separation of 5-mer on different UHPLC under same conditions

IP-RP separation of 5-mer (ETT) on different UHPLC under same conditions

IP-RP separation of 5-mer (DCI) on different UHPLC under same conditions

5-mer comparison using Agilent 1290 Bio-LC vs Another LC

IP RP Had Unique Chromatographic Profiles for Different Activators

∠J.O

∠4.∪

In-house synthesized 5-mer (ETT) Activator = ETT

Next steps:

- Continued IP-RP separation of other length oligos and RLD
- Use of other LC separations (MICC, SAX, HILIC)
- Work with the Cummings Lab to develop statistical/computational models to comprehensively evaluate and visualize diastereomer composition

Use of Ion Mobility to characterize OGN structure

- Gas phase separation
- Based on shape, size and charge
- Allows direct collisional cross section (CCS) calculation

Agilent DT-IM-QTOF 6560

Drift Tube Ion Mobility

Another dimension of separation to effectively isolate isobaric and isomeric structures that may not be resolved through LC-MS.

Distinct drift times and associated Collision Cross Section (CCS) Values

High Resolution Mass Spectrometry

- Accurate Mass ٠
- Charge State Distribution ٠
- Adduct distribution (deprotonation ٠ with various Na and/or K)
- Isotopic Envelope ٠

Drift Tube Ion Mobility (DT-IM)

Generation of Drift Spectra to Profile OGN Structure

Drift Time Mobiliograms: OGN fingerprints

Drift Time Mobiliograms: OGN fingerprints

Diastereomer Characterization via IP-RP, IM, and NMR

Mass Spec/Ion Mobility

Chromatography

NMR

Chemical Synthesis

Stats/Computation

OGN Structure

Frederick S. Brundick/cc-2.0/https://flic.kr/p/29umt8b

Acknowledgements

Jones Laboratory (UMB SOP)

Mohsin Ali, PhD Yuanyuan Ji, PhD Josie Daldegan Rezende Sazia Kachi

Former Members:

Anh Tran, PhD Yulemni Morel, PhD Padmapriya Sridhar, MS Mayur Shete, MS

Fletcher Lab (UMB PSC) Cummings Lab (U. Maryland College Park) Brinson Lab (IBBR, NIST) Agilent Inc.

J Jones Lab

www.jacewjoneslab.com

UNIVERSITY of MARYLAND SCHOOL OF PHARMACY MASS SPECTROMETRY CENTER

Funding:

- U01FD007651 (Jones)
- UMB SOP start-up funds
- University of Maryland School of Pharmacy Mass Spectrometry Center (SOP1841-IQB2013)
- R21NS117867 (Jones/Sarkar)
- R01NS115876 (Lipinski), R33AG076858 (Lipinski)
- U01FD005946 (MPI, Kane, Lipinski, Sarkar, Jones)
- Agilent Research Gift #4520
- MassTech Research Contract
- ASMS Research Award