Microchip CE-MS for rapid, deep and sensitive analysis of biopharmaceuticals

Sara Carillo¹, Florian Füssl¹, Silvia Millán-Martín¹, Rachel Ronan¹, Craig Jakes¹ & Jonathan Bones^{1,2}

¹NIBRT, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland ²School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland

P 2024 – 908 Devices Lunch Seminar

NIBRT Overview

- Unique facility dedicated to address the training and research needs of the global biopharmaceutical industry based in Dublin, Ireland.
- Competency based training experience in an environment that replicates modern industrial bioprocessing facilities.
- Research with impact developing solutions to address real challenges faced within the biopharmaceutical industry.
- Facility expansion for advanced therapy research and training and new early-stage development facility opened in 2023.

Complexity of Biopharmaceuticals landscape

- Proteins exist in a variety of forms rather than one individual form due to macro-and microheterogeneity as a consequence of differential posttranslational modification (PTMs).
- New modalities come with different analytical challenges and bottom-up approaches cannot provide all the answers.

Need for Native Intact Analysis

- Proteins exist in a variety of forms rather than one individual form due to macro-and microheterogeneity as a consequence of differential posttranslational modification (PTMs).
- New modalities come with different analytical challenges and bottom-up approaches cannot provide all the answers.

Need for Native Intact Analysis

Charge variant profile can only be obtained separating proteoforms in their native state.
 Direct MS identification can enhance speed of analysis and confidence in the identification.

ZipChip-MS, a Simple Method for Charge Variant Profiling

- The HRN ZipChip kit provides a simple out of the box solution for charge variant profiling with minimal optimisation required.
- Separation based on differences in net surface charge, pH gradient CEX-MS: Δ pl, ZipChip: differential electrophoretic mobility.

Platform-like Method for Any Molecule

Sensitivity on ZipChip - Cetuximab

Operational flowrates of ZipChip are equivalent to those used in nanospray infusion, which generates excellent experimental sensitivity from sample on chip in the 1-2 ng range.

MS Detection Enables Proteoform Annotation

Platform Method for Antibody Drug Conjugates Too

Molecular heterogeneity of MSQC8 cysteine linked ADC mimic evaluated using infusion first. High level of complexity visible due to attributes on the mAb itself, such as N-glycosylation in addition to linker payload conjugation

Exploring the Microheterogeneity

ZipChip-MS Analysis of MSQC8 ADC Mimic

ZipChip-MS analysis on HRN chip reveals additional heterogeneity based on differential surface charge, mass shifts shown are relative to the dominant species in the main peak.

Annotation of ADC Charge Variants Following Pep Map

Peptide mapping was performed to assist with annotation of the observed charge variants, which were found to occur based on PTMs and payload fragmentation.

ZipChip-MS Analysis of Bispecific Antibodies

Peptide Mapping on ZipChip-MS – Sample Prep Workflow

Peptide Mapping on ZipChip-MS – Sample Prep Workflow

Verification of Digest Performance using LC-MS

Rapid, High Sensitivity, High Coverage Peptide Mapping

Platform Peptide Mapping using ZipChip-MS

ZipChip and Maurice Flex

Adeno-Associated Virus (AAV)-based Gene Therapy

Treats genetic diseases, caused by absent or defective genes

Li et al, Cell & Gene Therapy Insights 2019; 5(4), 537-547

AAV Viral Capsid Protein (VP) Analysis

Does DMSO impact MS signal and Identifications?

Effect of DMS	O exemplif	ied using a	cetylated V	P3 ((Ac)VP3) and VP2	
		(AC)VP3			VP2	
Condition	1	2	3	1	2	3
Ave. Sum Intensity	2.34×10^{10}	3.54 × 10 ¹⁰	3.36 × 10 ¹⁰	8.90 × 10 ⁷	3.67 × 10 ⁸	3.30 × 10 ⁸
Ave. # of Charge States	53.20	30.40	30.00	44.80	24.40	24.25
Ave. Min. Charge State	31.20	37.40	37.40	44.00	48.60	49.25
Ave. Max. Charge State	83.40	66.80	66.40	88.60	72.00	74.75

Identified AAV8 viral capsid proteins (VPs) under investigated sample analysis conditions

Capsid Viral Proteins (Theoretical mass)	Mato Err	ched I or (pp	Mass om)	F Abu	Relativo ndance	e e (%)	Fr Abu	raction ndance	al e (%)		Quality Score	,
Condition	1	2	3	1	2	3	1	2	3	1	2	3
(Ac)VP1 + 2x P (81,826.67 Da)	6.7 ⁵	0.7ª	-	0.06	0.56	-	0.01	0.07	-	34.33	74.78	-
(Ac)VP1 + 1x P (81,746.69 Da)	1.7	0.0	2.1	0.57	2.05	1.83	0.09	0.24	0.21	149.73	127.34	115.08
(Ac)VP1 (81,666.71 Da)	6.4	1.6	1.0	0.43	1.12	1.26	0.07	0.13	0.14	168.28	94.43	117.70
VP2 + 1x P (66,598.08 Da)	2.7	1.2	8.3	0.51	1.85	1.74	0.08	0.22	0.20	107.14	91.33	92.65
VP2 (66,518.10 Da)	6.0	3.4	3.1 ª	0.25	0.94	0.81	0.04	0.11	0.09	81.58	98.99	83.38
(Ac)VP3 + 1x P (59,884.66 Da)	1.5	15.3	14.3	1.24	5.81	5.25	0.19	0.68	0.60	60.41	75.34	77.02
(Ac)VP3 (59,804.68 Da)	3.9	5.8	5.9	65.15°	90.87º	81.87º	10.11	10.64	9.39	262.41	122.59	119.71
VP3 (59,762.65 Da)	9.5	14.9	13.5	28.58	47.77	43.82	4.43	5.60	5.03	238.27	114.04	114.50
VP3 Fragment (59,506.81 Da)	1.6	2.5	5.0	0.87	3.13	2.61	0.13	0.37	0.30	79.64	85.42	81.09
213(Ac)-VP3 Variant (59,191.98 Da)	3.3ª	1.7	5.1	0.87	3.79	3.48	0.14	0.44	0.40	55.24	75.60	83.71

^a Only found in 4 of the 5 replicate injections; ^b Only found in 3 of the 5 replicate injections; ^c (Ac)VP3 is the most abundant VP. The most abundant feature is an unknown component detected in the host cell contaminants peaks

Limit of Detection (LoD) Testing

Plot of TIE area and intensity versus # of viral particles

Adapted from Figure 2 and Figure S1 of Smith et. al ABC, 2023

VP Separation on ZipChip Platform with AAV8

Detected VP Proteoforms and Fragments

Start of AAV Sequence

r►VP1				
MAADGYLPDWLEDTI	SEGIRQWWKL	KPGPPPPKP	AERHKDDS	RGLVLPGY
1				49
KYLGPFNGLDKGEP\	NEADAAALEHI	DKAYDRQLD	SGDNPYLK	YNHADAEF
50			r► VP2	99
QERLKEDTSFGGNLO	GRAVFQAKKRVI	LEPLGLVEE	PVKTAPGK	KRPVEHSP
100			138	149
VEPDSSSGTGKAGQQ	PARKRLNFGQ	TGDADSVPD	PQPLGQPP	AAPSGLGT
L50 -► VP3 -► A21	1-VP3			199
NTMATGSGAPMADNN	IEGADGVGNSS	GNWHCDSTW	MGDRVITT	STRTWALP
200 203 211				249
TYNNHLYKQISSQSO	GASNDNHYFGY	STPWGYFDF	NRFHCHFS	PRDWQRLI

250

		init	l iati	=irs on	t coc	lon	-	<u>'L</u>	e	a	k	<u>y'</u>	"	<u>C</u>	0	d	01	n	S	<u>C(</u>	aı	<u>11</u>	<u>1</u> i	n	g	init	Se iati	on	nd cod	lon			
 А	С	А	Α	т	G	G	С	т	т	С	А	G	G	С	G	G	т	G	G	С	G	с	А	С	С	А	A	т	G	G	С	А	
 А	С	G	Α	т	G	G	С	т	А	С	А	G	G	С	А	G	т	G	G	С	G	С	А	с	С	А	Α	т	G	G	С	А	
 А	С	А	Α	т	G	G	с	т	т	С	А	G	G	С	G	G	т	G	G	с	G	С	А	С	С	А	Α	т	G	G	С	А	
 А	С	А	A	т	G	G	С	т	Т	С	А	G	G	С	G	G	т	G	G	С	G	С	А	С	С	А	Α	т	G	G	С	А	
 А	С	А	A	т	G	G	С	т	G	С	А	G	G	С	G	G	т	G	G	С	G	С	А	С	С	А	Α	т	G	G	С	А	
 А	С	А	A	т	G	G	С	т	G	С	А	G	G	С	G	G	т	G	G	С	G	С	т	С	С	А	Α	т	G	G	С	А	
 А	С	А	Α	т	G	G	С	т	G	С	А	G	G	С	G	G	т	G	G	С	G	С	т	С	С	А	Α	т	G	G	С	А	
 G	А	G	Α	т	G	С	G	т	G	С	А	G	С	А	G	С	т	G	G	С	G	G	А	G	С	т	G	С	А	G	т	С	
 G	А	А	Α	т	G	С	G	т	G	С	А	G	С	А	С	С	G	G	G	с	G	G	А	А	А	т	G	С	т	G	т	С	
 G	А	G	A	т	G	С	G	Т	G	С	G	G	С	G	С	С	А	G	G	С	G	G	А	А	А	т	G	С	Т	G	т	С	
 А	С	А	Α	т	G	т	С	т	G	С	G	G	G	А	G	G	т	G	G	С	G	G	С	С	С	А	т	т	G	G	G	С	
 А	С	А	Α	т	G	G	С	т	т	С	А	G	G	т	G	G	т	G	G	С	G	С	А	С	С	А	G	т	G	G	С	А	
 А	С	А	G	т	G	G	С	т	G	с	А	G	G	с	G	G	т	G	G	С	G	С	А	С	С	А	Α	т	G	G	с	А	

299

https://www.liebertpub.com/doi/10.1089/hum.2021.009

VP3	Variant	Generation	

Serotypes		1	N-te	erm	ina	lre	gio	n			DP	sec	que	nce	DG	se	que	ence	DP	se	que	ence	•	
Gerotypes	203								211			590	591			626	627			656	657			
AAV1	 М	А	S	G	G	G	А	Ρ	М	А	 Т	D	Ρ	А	 Т	D	G	н	 Α	Ν	Ρ	Ρ		
AAV2	 М	А	т	G	s	G	А	Ρ	М	А	 R	Q	А	А	 т	D	G	н	 Α	Ν	Ρ	s		
AAV3	 М	А	s	G	G	G	А	Ρ	М	А	 т	А	Ρ	т	 Т	D	G	н	 Α	Ν	Ρ	Ρ		
AAV6	 М	А	s	G	G	G	А	Ρ	М	А	 т	D	Ρ	А	 т	D	G	н	 Α	Ν	Ρ	Ρ		
AAV8	 М	А	А	G	G	G	А	Ρ	М	А	 т	А	Ρ	Q	 т	D	G	Ν	 А	D	Ρ	Ρ		
AAV10	 Μ	Α	А	G	G	G	А	Ρ	М	А	 т	G	Ρ	L	 Т	D	G	Ν	 А	D	Ρ	Ρ		
AAVrh10	 М	А	А	G	G	G	А	Ρ	М	А	 А	А	Ρ	L	 т	D	G	Ν	 А	D	Ρ	Ρ		
AAV4	 М	R	А	А	А	G	G	А	А	V	 Ν	L	Ρ	т	 Т	D	G	н	 Α	Ν	Ρ	А		
AAV11	 М	R	А	А	Ρ	G	G	Ν	А	V	 т	А	Ρ	L	 Α	D	G	н	 А	Ν	Ρ	А		
AAV12	 М	R	А	А	Ρ	G	G	Ν	А	V	 т	А	Ρ	н	 т	D	G	н	 А	Ν	Ρ	Ν		
AAV5	 М	s	А	G	G	G	G	Ρ	L	G	 т	А	Ρ	А	 т	G	А	н	 G	Ν	I	-		
AAV9	 М	А	s	G	G	G	А	Ρ	۷	А	 А	Q	А	Q	 т	D	G	Ν	 А	D	Ρ	Р		
AAV7	 v	А	А	G	G	G	А	Ρ	М	А	 т	А	А	Q	 т	D	G	Ν	 Α	Ν	Ρ	Ρ		

Adapted from Figure 5a of Oyama et al. (2021)

https://www.liebertpub.com/doi/10.1089/hum.2021.009

VPs with additional PTMs C-Term Fragments

- Potential Causes of Fragments
 Baculoviral cathepsin
 - Immune response
 - Acidic conditions

VP3

M203-VP3

AAV Peptide Mapping

AAV Sequence Coverage and Post-translational Modifications

- Rapid performance with analysis in under 20 minutes
- 100% sequence coverage for all VPs including VP3 variants ٠
- Identification of commonly monitored post-translational modifications (PTMs)

200

400

Protein	Modification	Peptide Sequence	Average % Abundance	STDEV N=2
AAV9_VP1	Q119+NH3 loss_Glutarimide	QAKKRLLEPLGL	57.21	3.52
AAV9_VP1	A203+Acetylation	ASGGGAPVADNNEGADGVGSSSGNWHCDSQWLGDRVITTSTRTWALPTYNNHL ASGGGAPVADNNEGADGVGSSSGNWHCDSQWLGDRVITTSTRT	98.25	0.08
AAV9_VP1	M372+Oxidation	FMIPQYGYLTLNDGSQAVGRSSF	1.31	0.12
AAV9_VP1	D383+Succinimide D	LTLNDGSQAVGRSSF MIPQYGYLTLNDGSQAVGRSSF FMIPQYGYLTLNDGSQAVGRSSF	1.03	0.04
AAV9_VP1	M403+Oxidation	EYFPSQMLRTGNNFQF	1.09	0.04
AAV9_VP1	M435+Oxidation	DRLMNPLIDQYL FENVPFHSSYAHSQSLDRLMNPLIDQ	1.49	0.13
AAV9_VP1	N451+Deamidation	YYLSKTINGSGQNQQTLKFSVAGPSNM	1.23	0.25
AAV9_VP1	~Y483+Phosphorylation	SVAGPSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSE AVQGRNYIPGPSYRQQRVSTTVTQNNNSE	2.57	0.08
AAV9_VP1	M523+Oxidation	ALNGRNSLMNPGPAMASHKEGEDRFFPLSGSL FAWPGASSWALNGRNSLMNPGPAMASHKEGEDRFFPLSGSL	6.55	0.77
AAV9_VP1	~Q607+NH3 loss_Glutarimide	QDRDVYLQGPIW	19.68	11.22
AAV9_VP1	Q614+NH3 loss_Glutarimide	QGPIWAKIPHTDGNFHPSPLMGGFGMKHPPPQIL QGPIWAKIPHTDGNFHPSPLMGGF	34.76	4.88
AAV9_VP1	D625+Succinimide D	AKIPHTDGNFHPSPLMGGFGMKHPPPQIL	1.88	0.25

m/z

Experimental ID=1:A509-L540 = 3399.6452m(M523+Oxidation), +4, Peptide=ALNGRNSL 783 0438 1174.0665

m/z

m/z

File: AAV9_Empty_NibrtProtocol_908MS_20min_combined_rep1_15 F: FTMS + p ESI d Full ms2 1253.2086@hcd28.00 [95.0000-6416.4639] Experimental ID=1:Y444-E499 = 6178.0315m(~Y483+Phosphorylation), +5, Peptide=YYLS KTINGSGQNQQTLKFSVAGPSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSE

ก่ก

m/z

1000

1200

600

- ZipChip coupled to MS detection offers a versatile platform for analysis of biopharmaceuticals on multiple different levels, just pick the background electrolyte and chip format for your application of interest.
- Overall method performance is excellent, high sensitivity from low sample amounts and excellent data depth when using Orbitrap MS detection.
- Different applications demonstrated, from intact to peptide mapping analysis.
- All these methods can be considered platform and ready to go out of the box. Application to various molecular formats shown, including viral particle analysis for gene therapy products.
- ZipChip's versatility make it an attractive technology for labs where throughput and time are important.

Acknowledgements

NIBRT:

Florian Füssl, Sara Carillo, Silvia Millan-Martín, Craig Jakes, Josh Smith, Rachel Ronan, Patrice Knightly.

ENTERPRISE

IRELAND

908 Devices:

Kate Yu, Aditya Kulkarni, Erin Redman, Ashley Bell, Graziella Piras.

ThermoFishe

SCIENTIFI

