Mini Case Studies Session 2 -Could ADCs be the drug equivalent of Lego[®]?

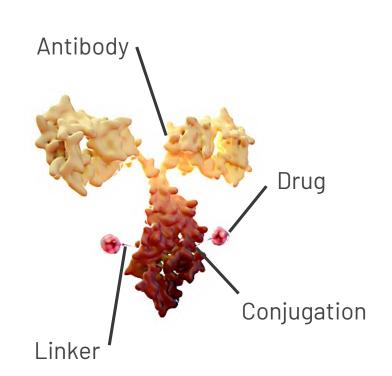
WCBP 2024

11:00 AM, Thursday, January 25

Nathan Ihle, Bolt Biotherapeutics Carol Krantz, Pfizer

Agenda

Introduction to ADCs


- Anatomy of an ADC
- ADC Manufacturing
- ADC CQAs
- ADC Control Strategies
- CMC Strategy White Papers

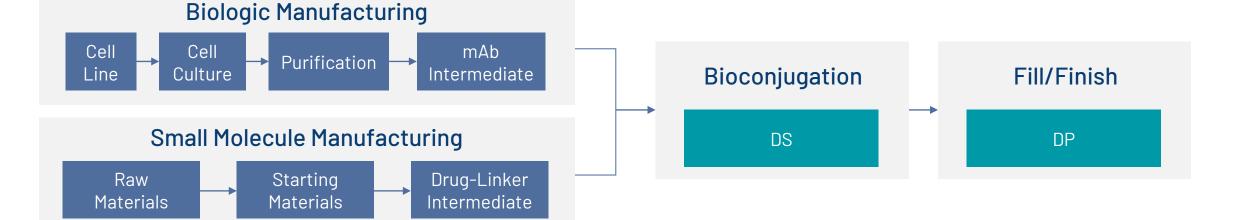
Three Mini Case Studies

• Post-Approval Changes

Group Discussion

Anatomy of an ADC The whole is greater than the sum of its parts

 Antibody Targets tumor antigen IgG, biospecific, other variants Wild type or engineered Known or novel 	 Drug Drives primary mechanism of action Cytotoxics Immune modulators Antibiotics Oligonucleotides Other drug classes
 Linker Cleavable Non-cleavable Physicochemical property	 Conjugation Controls drug-to-antibody
modifiers	ratio (DAR) Lysine Cysteine Enzymatic Stochastic Site specific


ADC Manufacturing – Hybrid Processes

Intermediate Processes

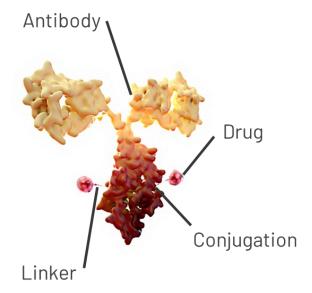
- mAb process
- Drug-linker process

Drug Substance/Drug Product Processes

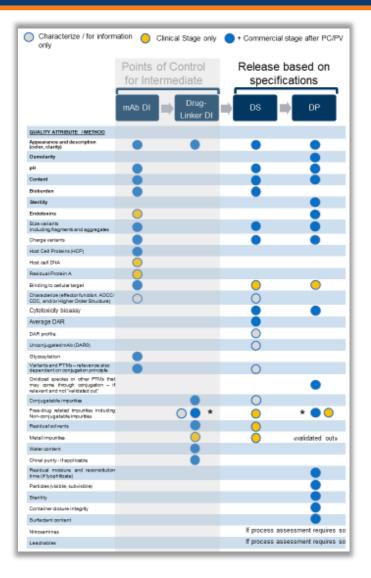
- DS conjugation process
- DP fill/finish process

ADC Critical Quality Attributes: Focus on the Drug Substance

Drug Substance


- Product-related attributes
 - MOA(Potency)
 - Structure -
 - Amino Acid Modifications
 - Sequence Variants
 - Size/charge Variants
- Process-related Impurities and contaminants
 - DNA, HCP, Side Product, etc.

Drug Product (DP obligatory CQA)


• Visible/sub-visible particles, pH, osmolality, excipient, etc.

Primary Secondary Tertiary

Oxidation Met Oxidation Trp Oxidation Lys Deamidation Asn Deamidation Gln Glycation Lys

Rationalizing Points of Control and Specifications - Example

6

Attribute	mAb DI	Drug- Linker Dl	DS	DP		
рН]	
Content					Redundant	
Size Variants					- Controls	
Charge Variants*					Expected	
Effector Functions	0		0			
Host cell protein						
Host cell DNA	0				Single Point of Control	
Purity/Assay						

*Strategy regarding effector functions depends on mechanism of action

- Controls through commercial

- Characterization and/or comparability

Reference: Bechtold-Peters, et al., Journal of Pharmaceutical Sciences 112 (2023) 2965–2980

Assumptions:

DL and mAb intermediates are well characterized and critical quality attributes (CQAs) are identified as intermediates for conjugation and as part of the final product

DL and mAb processes have been rigorously characterized, the parameters and controls are well understood, and prior knowledge could be applied.

DL and mAb meet the CQAs and demonstrated to be comparable to pre-change DL and mAb respectively

Comparability assessment is based on the risk assessment between intermediate sources and meets HA expectations in different markets

DS process has been rigorously characterized, intermediate attributes are well defined, and no DS processes changes are in scope.

Confirm similarity of DS process performance and product quality using qualified small-scale model.

Case Study 1: FDA feedback on addition of a new Drug-Linker intermediate supply for 3 platform ADCs

Critical quality attributes for the DL intermediate are well defined for:

- Manufacturing using platform conjugation process linking to platform mAbs
- quality target product profile in the resulting ADC

Risk assessed as LOW based on:

- Same specifications; similar purity/impurity profiles at release and on stability
- Same routes of chemical synthesis; 1.2 times larger scale
- Similar raw materials and reagents
- Similar analytical methods
- DL Process Performance Qualification successfully completed
- Facility GMP inspected and in good standing
- Meets incoming requirements for DS manufacturing

Case Study 1 - Evolution of HA feedback and Sponsor approaches

Example	Product A (FDA Consultation)	Product B (FDA Consultation)	Product C (No Consultation)	
DL	Same DL data package: 3 PPQ DL batches, release data, long-term and accelerated stability data			
DS (-60°C)	Comparability: 3 x 3 DS batches, comparative batch analysis and thermal stress data			
	Stability: 1 batch Commitment for long-term conditions Sponsor's conservative approach - 3 batches	Stability: 1 batch (<i>HA Feedback</i>) Commitment for long-term and accelerated conditions	Stability: 1 batch Commitment for long-term conditions	
DP (Lyo)	None*	Stability: 1 batch (HA Feedback) Commitment for long-term and accelerated conditions	None	
Outcome	PAS Approved	PAS Approved	PAS Approved	

*Product A, HA feedback was to provide comparability for both DS and DP but Sponsor successfully rationalized to conduct stress studies on DS and place 1 batch on stability. The same approach was not accepted by HA for Product B.

Case Study 2: Comparison of submission content by market for addition of a new Drug-Linker intermediate supplier

Example	FDA (Consultation)	EMA and ROW (No Consultation)	Health Canada (No Consultation)
DL	Same DL data package: 3 DL PPQ batches, release data, long-term and accelerated stability data		
DS (-60°C)	Comparability: 3 x 3 DS batches, comparative batch analysis and thermal stress stability data		
、 ,	Stability: 1 batch (<i>HA feedback</i>) Commitment for long-term and accelerated conditions	Stability: 3 batches (<i>Sponsor decision</i>) Long-term and accelerated conditions data	Stability: 3 batches (<i>HC NOC guidance</i>) Long-term and accelerated conditions data
DP (Lyo)	No comparability assessment	Comparability: 3 x 3 batches (<i>Sponsor decision</i>) Comparative batch analysis	No comparability assessment
	Stability- 1 batch (FDA feedback) Commitment for long term and accelerated conditions	No stability data in submission	No stability data in submission (HC guidance suggests to place 1 DP batch on stability)
Outcome	PAS Approved	Type II Variation Approved	sNDS Approved

Discussion Questions

- 1. What would you have done differently?
- 2. What submission strategies have you successfully used to add DL 2nd sources?
- 3. What submission strategies have you used to mix and match different mAbs with different DLs?
- 4. What datasets should be provided for DS and DP following changes to the DL if it meets incoming specifications and has been shown small scale to be fit for purpose?
- 5. What about following changes to the mAb if pre- and post-change mAb is analytically comparable?
- 6. What other mix and match strategies might be justified?

Case Study 3: Addition of new mAb intermediate manufacturing site

Critical quality attributes for the intermediate well defined for:

- platform conjugation process linking to drug-linker
- quality target product profile

Risk assessed as LOW based on:

- Same specifications; similar purity/impurity profiles at release and on stability
- Similar process modified for facility fit
- Similar raw materials and reagents
- Similar analytical methods
- Similar preliminary tech transfer process performance and product comparability data
- Process Performance Qualification successfully completed
- Clinical facility to be licensed as a commercial facility

Case Study 3: Comparison of submission content by market for addition of a new mAb intermediate manufacturing site

Examples	FDA (Consultation)	EMA (No Consultation) and ROW	Health Canada (No Consultation)
mAb	Same mAb data package: 3 mAb PPQ batches, release data, comparative batch analysis, extended characterization, thermal stress studies, long-term and accelerated stability data		
DS	No comparability assessment		
(-60°C)	Same stability package: 3 batches Commitment for long term and accelerated conditions		
DP (Lyo)	Comparability: 3 x 3 batches (FDA Feedback) Comparative batch analysis and thermal stress data	Comparability: 3 x 3 batches (<i>Sponsor decision</i>) Comparative batch analysis and thermal stress data	Comparability: 3 x 3 batches (HC NOC guidance) Comparative batch analysis and thermal stress data
	Stability: 1 batch <i>(FDA Feedback)</i> Commitment for long-term and accelerated conditions	Stability: 1 batch (<i>Sponsor decision</i>) Long-term and accelerated conditions data	Stability: 1 batch (<i>Sponsor decision</i>) Long-term and accelerated conditions data
Outcome	PAS Approved	Type II Variation Approved	sNDS Approved

Discussion Questions

- 1. What would you have done differently?
- 2. What submission strategies have you successfully used to add DL 2nd sources?
- 3. What submission strategies have you used to mix and match different mAbs with different DLs?
- 4. What datasets should be provided for DS and DP following changes to the DL if it meets incoming specifications and has been shown small scale to be fit for purpose?
- 5. What about following changes to the mAb if pre- and post-change mAb is analytically comparable?
- 6. What other mix and match strategies might be justified?

Recent White Papers Presenting CMC Strategies for ADCs

- Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates Gong, et al., AAPS PharmSciTech 19, 971–977 (2018).
- Drug-Linkers in Antibody–Drug Conjugates: Perspective on Current Industry Practices Bulger, et al., Organic Process Research & Development 27(7), 1248–1257 (2023).
- Strategies for UF/DF-Based Impurity Removal in the Post-conjugation Purification of Antibody–Drug Conjugates Fernandez-Cerezo, et al., Organic Process Research & Development 27 (7), 1258–1268 (2023).
- Considerations for Starting Material Designation for Drug-Linkers in Antibody–Drug Conjugates Jones, *et al.*, Organic Process Research & Development 27(7), 1269–1275 (2023).
- CMC Regulatory Considerations for Antibody-Drug Conjugates Bechtold-Peters, *et al.*, Journal of Pharmaceutical Sciences 112 (2023) 2965–2980.