

Designing and Manufacturing Medicines with Sustainability at the Core

Philip Dell'Orco

VP, Medicine Development and Industrialization

Starting with some numbers....

4-5%

Healthcare contribution to global carbon footprint ¹

~20%

Of heallthcare foortprint due to disposables ¹

7-35%

Of healthcare footprint due to pharmaceuticals ¹

~10-50%

Due to energy production and consumption ¹

~24 / 124

Kg CO₂e/hr Surgery ² / Kg CO₂e for a cardiac surgery ³

~50%

Adherence to chronic drug regimens 4

- 1. Rodriguez-Jimenez et al. 'The Carbon Footprint of Healthcare Settings: A Systematic Review' J. Adv Nurs 2023, 79 2380
- 2. Whiting, et al. 'Surgery and the NHS Carbon Footprint' The Bulletin of the Royal College of Surgeons of England Volume 102, Issue 5 July 2020 168
- 3. Barratt et al. 'Environmental Impact of Cardiovascular Healthcare' Open Heart 2023;10:e002279. doi:10.1136/openhrt-2023-002279
- 4. Barayokova et al 'Overcoming Barriers to Patient Adherence: The case for developing innovative drug delivery systems' Nature Reviews Drug Discovery | Volume 22 | May 2023 | 387–409 https://doi.org/10.1038/s41573-023-00670-0

Climate targets Carbon footprint Reduction priorities Approach to offsets Pathway

Our pathway to net zero impact on climate 1

Our climate targets

We have set a clear pathway to a net zero impact on climate. By 2030, we aim to reduce carbon emissions by 80% with the remainder offset through investment in high-quality nature-based solutions, and by 2045, we aim to be at the Science Based Target Initiative Net Zero Standard, with carbon emissions reduced by at least 90% and the remainder tackled through high-quality offsets.

2025

100% renewable electricity (scope 2)

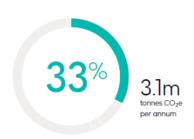
2030

80% reduction in carbon emissions and investment in nature-based solutions for the remaining 20% of our footprint (all scopes)*

2045

Net zero emissions across our full value chain by 2045 (all scopes)

- Our net zero targets cover the full value chain of emissions reductions, from a baseline of 2020
- We have re-submitted our new carbon targets and pathway to the Science Based Targets Initiative to verify that they align to a 1.5° pathway, following the demerger of our Consumer Healthcare business
- We have submitted our 2045 target to the Science based Targets Initiative for verification by their Net Zero Standard
- We disclose progress against these targets annually in our <u>Annual Report and ESG Performance Report</u> (2022)



Previously stated as net zero by 2030, and updated to align with the SBTI Net Zero Standard. See page 16 of the <u>ESG Performance Report</u> for more context.

GSK's value chain carbon footprint

Purchased goods and services

Scope 3 emissions from the goods and services that GSK buys from other companies.

Purchased	1.8m
goods	tonnes CO₂e per annum
Purchased	0.9m
services	tonnes CO₂e per annum
Capital investments	0.2m tonnes CO₂e per annum
Commuting	0.05m tonnes CO ₂ e per annum
Business	0.05m
travel	tonnes CO ₂ e per annum
Upstream	0.1m
energy	tonnes CO₂e per annum

GSK's operations

Scope 1 and 2 emissions from running our labs, factories and commercial offices.*

Energy	0.5m tonnes CO ₂ e per annum
HFA and manufacturing emissions	0.2m tonnes CO _z e per annum
Sales force	0.1m tonnes CO _z e per annum

* Scope 1 and 2 market-based emissions

Logistics

Scope 3 emissions from delivering medicines and vaccines across the globe.

Upstream	0.2m
logistics	tonnes CO ₂ e per annum
Downstream	0.1m
logistics	tonnes CO _z e per annum

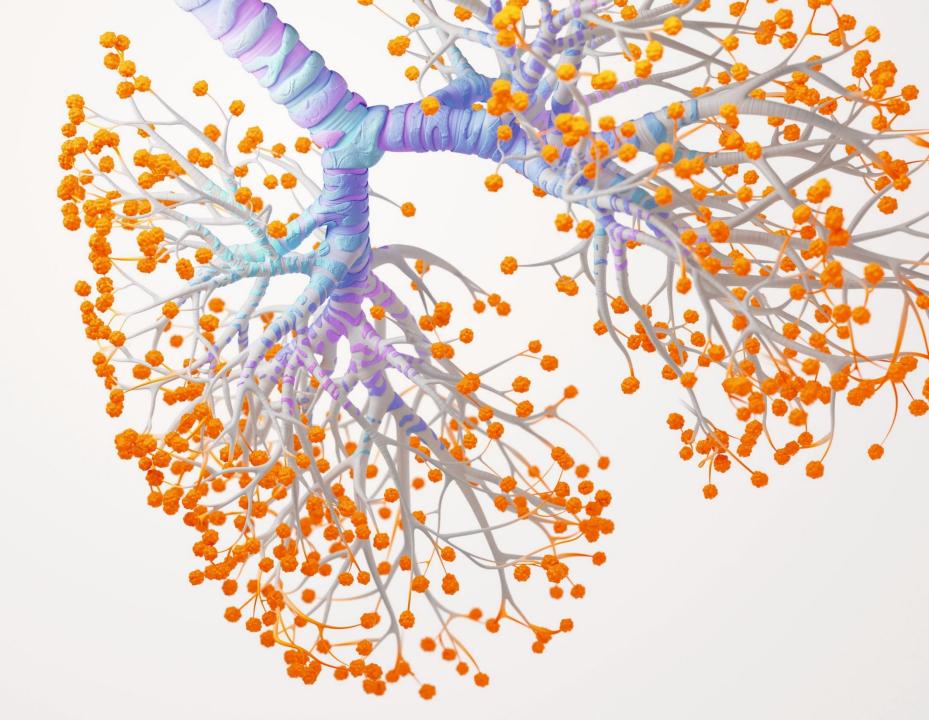
Patient use

Scope 3 emissions from patients using our products.

Use of metered 5.0m dose inhalers tonnes CO2e per annum Use of other <0.1m products

tonnes CO₂e per annum

Disposal


Scope 3 emissions from the disposal of our products by GSK patients.

9.39m Total estimated GSK emissions tonnes CO₂e per annum*

^{*} based on data from 2021

Asthma

Asthma Treatment

Pre- 2000s

Ventolin CFC

CFC 11/12 Mixtures
~ 100s kg/CO₂e / month

Today

HFA-134A

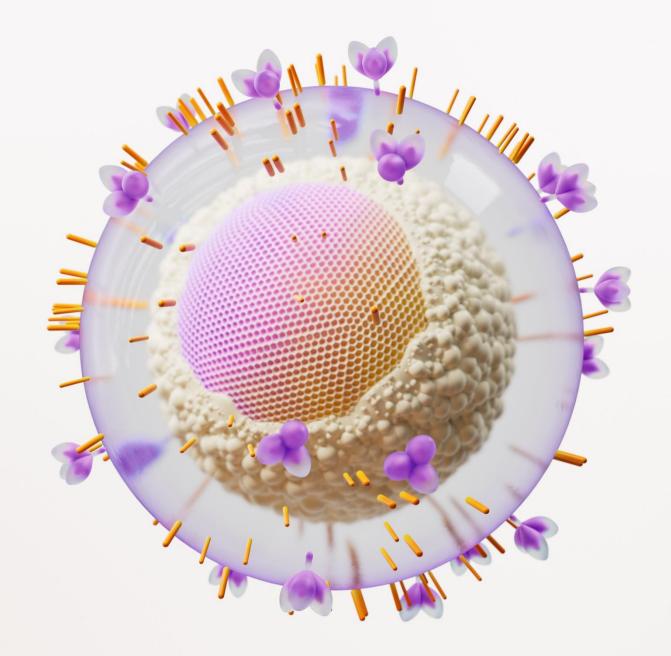
~ 10s kg CO₂e / month

Treatment Approach Footprint¹

MDI (HFC gas)	10-36.5 kg CO ₂ e / month / patient
DPI (no gas)	< 1 kg CO ₂ e/month /patient

Post 2025?

GSK announces major step towards sustainability ambitions with advancement of low carbon *Ventolin* programme to Phase III trials


- Next-generation propellant technology has the potential to reduce greenhouse gas emissions from *Ventolin* (salbutamol) inhaler by approximately 90%
- Current propellant accounts for 49% of GSK's carbon footprint
- The inhaler is currently prescribed to approximately 35 million patients
- Successful phase III trials to support regulatory submissions in 2025

HFA-152A – potentially single digit kg CO₂e / month

Opportunities

- DPI substitution for MDI where therapeutically possible
- Rapid switch to less impactful MDIs
- Longer acting control therapies

HIV

Changing the HIV Treatment Paradigm

The benefits of long acting regimens

2010s – daily fixed dose

combinations

2020s – long acting injectables

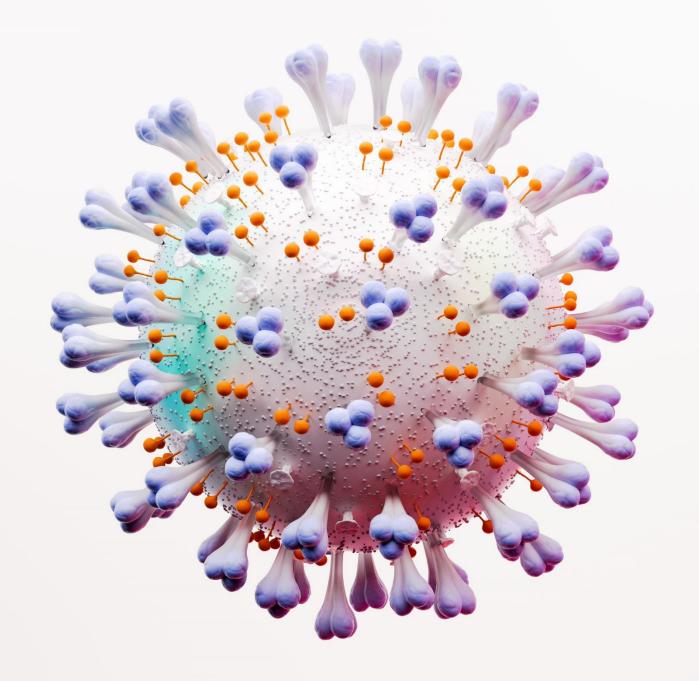
Future– longer acting Injectables?

Once / 4 to 6 month dosing

Thousands
kg CO₂e/year
(up to 20 tablets/day)

1990s

~20 tablets /day

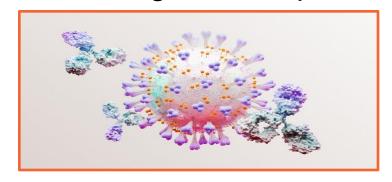

Hundreds kg CO₂e/year (one tablet / day) Tens
kg CO₂e/year
(6 doses / year)

Approach single digit kg CO₂e/year (2-3 doses / year)

'98% of people with no previous CABENUVA use preferred injections every other month over daily starter pills, 1% preferred daily starter pills, and <1% reported no preference'

Ref: Clinical Studies | CABENUVA (cabotegravir: rilpivirine)

COVID


COVID Therapy Carbon Footprint Paradigms

mRNA therapies offer several opportunities for global footprint reduction

CO₂ estimates for carbon footprint of an mRNA Vaccine¹

CO₂ Source	% Contribution	
Transport (air and ground)	94%	
mRNA Process	<< 1%	
Packaging (incl glass, syringe, cardboard)	2.9%	
Storage (at HCP)	1.4%	
Waste (incineration of plastics)	1.7%	
Total up to 0.2 kg CO ₂ / dose		

Typical mab carbon footprint ranges:

 $2000 - 10000 \text{ kg CO}_2 / \text{kg mab}^{2,3,4}$

Covid Antibody Doses: 500 – 1200 mg mab / patient

Carbon footprint of dosing an order of magnitud higher than mRNA dosing -on order of 10 kg CO2e / treatment (not including infusion room energy!)

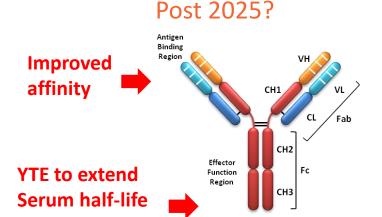
Future Opportunities

- Combination mRNA vaccines (reduce cold chain costs)
- Thermostable vaccines
- Higher potency mabs with the high process productivities

¹Int J Environ Res Public Health. 2021 Jul; 18(14): 7425. "The Ecological Footprint of COVID-19 mRNA Vaccines: Estimating Greenhouse Gas Emissions in Germany"

².2 Eri Amasawa e al. ACS Sustainable Chemistry & Engineering **2021** 9 (42), 14012-14021DOI: 10.1021/acssuschemeng.1c01435

³ Bunnak et al. 'Life-Cycle and Cost of Goods Assessment of Fed-Batch and Perfusion-Based Manufacturing Processes for mAbs' Biotechnol. Prog., 2016, Vol. 32, No.54.


Eosinophilic Asthma Treatment Paradigms

Pre- 2015

- Corticosteroids
- Long and short acting beta agonists
- Leukotrienes

Depemokimab (currently in Ph 3 trials)

Multiple once daily

Approaching 1000s kg

CO₂e/year

Once per 4 weeks

100s kg CO₂e/year

Lifecycle improvements can reduce to 10s kg CO₂e/year

Current State

Once per 6 months

Approaching < 10 CO₂e/year order of magnitude

- Future Opportunities
 - Long-acting biologicals that impact a broader range of asthma patients
 - Ambient temperature stability biologics to support this patient class

More on manufacturing....

How to impact energy??

- SUS vs SS?
- Perfusion vs Fed Batch?
- Continuous?

SUB vs SS² BUT.... SS would be better if the comparison was 3x 2K SUB vs 6K SS

2K Sub vs 2K SS	% Difference
Ecosystem	~34 (driven by climate change- CIP/SIP, WFI)
Human Health	~32
Resources	~34 (Fossil depletion)

Perfusion vs Fed-Batch

Carbon Footprint

17.4% better for FB(4 day perfusion pooling)

Closer to parity with 8 day pooling period

Continuous vs Batch

Facility Cost ->60% less (due to footprint)^{4,5}

Up to 68% reduction in consumable cost⁴

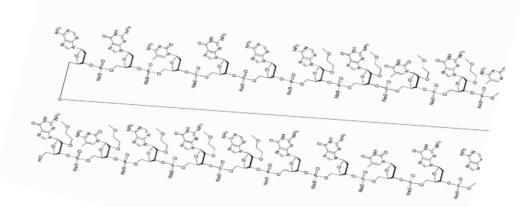
¹D'Aquila "An Approach to Ecodesign for Development of more Sustainable Products, Processes, Packaging and Devices, 2023 ISPE Annual Meeting & Expo, October 15-18

². Pieterzykowski, M. et al. "An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies" <u>Journal of Cleaner</u> ProductionVolume 41, February 2013, Pages 150-162

^{3.} Bunnak, et al. 'Life-Cycle and Cost of Goods Assessment of Fed-Batch and Perfusion-Based Manufacturing Processes for mAb' Biotechnol. Prog., 2016, Vol. 32, No. 5

^{4.} Yang, et al. 'Comparison between Batch and Continuous Monoclonal Antibody Production and Economic Analysis' Ind. Eng. Chem. Res. 2019, 58, 5851–5863

^{5.} GSK internal data


Hepatitis B

Hepatitis B Therapy Paradigms

Post 2025?

Once daily tenofovir disoproxil fumarate at 245 mg / day Entecavir once daily at 0.5 mg / day

> 1000 kg CO₂e over 20 years treatment¹

Bepirovirsen, approx. 300 mg for 24 weeks, loading dose 100s kg CO₂e for potential treatment regimen

- Future Opportunities
 - Vaccination!!! 2-3 orders of magnitude lower footprint
 - Improvements in oligonucleotide synthesis²
 - Improvements in oligonucleotide selectivity / delivery ³

¹Tao, et al. Environmental Sustainability of the Globalized Pharmaceutical Supply Chains: The Case of Tenofovir Disoproxil Fumarate ACS Sustainable Chemistry & Engineering 2023 11 (17), 6510-6522DOI: 10.1021/acssuschemeng.2c06518

²Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing; Benjamin I. Andrews, Firoz D. Antia, Shawn B. Brueggemeier, Louis J. Diorazio,

³Stefan G. Koenig, Michael E. Kopach, Heewon Lee, Martin Olbrich, and Anna L. Watson*The Journal of Organic Chemistry* 2021 *86* (1), 49-61DOI: 10.1021/acs.joc.0c02291

Roberts, T.C., Langer, R. & Wood, M.J.A. Advances in oligonucleotide drug delivery. *Nat Rev Drug Discov* 19, 673–694 (2020). https://doi.org/10.1038/s41573-020-0075-7

Conclusions

- Great progress has been made over the past few decades to improve not just the standard of care but also the carbon footprint of patient therapy
- Prevention <u>always</u> trumps treatment for carbon footprint reduction
 - Vaccines / Long acting medications
- Innovation in medicines for patient benefit nearly always have sustainability benefits
 - Improve adherence
 - Better molecules
- Manufacturing innovations are still required mab, oligonucleotide, cell therapies
- Eco-Design benefits not just the environment, but also patients...

Acknowledgements: Many thanks to Antonio Ubiera, Wendy Cross, Giuseppe Whelan, Varnika Roy, Dan D'Aquila and Will Clark

