From Blood-brain Barrier to Blood-brain Interface: Strategies for Drug Delivery to the Brain

William A Banks MD, VA & U of Washington, Seattle wabanks1@uw.edu

100th ANNIVERSARY OF THE NOBEL PRIZE

- Tight Junctions

IL EHRLICH 1854-1915) ICINE 1908 GERMANY

 Loss of Fenestrae Dec Pinocytosis

Brain Capillary

Liver Capillary

Inside of Skull

Beyond the Barrier: Roles of the Blood-Brain Barrier

• <u>Nutrition</u>

Glucose, Amino Acids, FFA, Vitamins.

• <u>Homeostasis</u>

Electrolytes, HCO3, p-Glycoprotein...

<u>Communication</u>

Peptides & Regulatory Proteins (Leptin, Enkephalins, Cytokines....)

Blood-Brain Interface

How Do Substances X the BBB?

100% Biologics Do Not Cross the BBB

Insulin **IGF-1** Transferrin Leptin Ghrelin MSH Pan Polypep. Prolactin GH LH **TNF-alpha** IL-1 alpha IL-1 beta IL-1 ra: Anakinra MIF-1 IL-6 AVP **GM-CSF BDNF FGFs Chemokines**

Delta Sleep Inducing Peptide **Vasoactive Intestinal** Peptide **PACAP1-39 PACAP1-27** Secretin Substance P **B-Endorphin Abeta Peptide Alpha-Synuclein Murine Prion** LHRH HMGB-1 S Protein (Covid) **GP120 (HIV-1)**

Cyclo His-Pro Amylin Orexin-A Tat LIF-1 Nesfatin-1 Exendin Breaker Peptides

Peptide Analogs Oligophosphorothioate Antisenses Glycoproteins Apolipoproteins Triglycerides Exosomes Viruses/Bacteria/ Parasites

Oligophosphorothioate Antisenses

- A = O(-): phosphodiester = S(-): phorphorothioate
- Favorable PK
- Target SpecificityCrosses the BBB

Banks, WA, J Pharmacol Exp Therap 297:1113-27, 01

Antisense Oligonucleotides

Protein Down Modulated	Result of Target Down Regulation				
Amyloid Precursor Protein APP by EDN-OL1	 Restoration of cognitive function Reduction of oxidative damage. Restoration of normal efflux of amyloid proteins. 				
PACAP27 (PTS-6) Efflux transport protein: beta-F1 ATPase by EDN-OL202	 Increased PACAP27 in brain Apparent increase in brain of peripherally administered PACAP27 Neuroprotection in occlusive stroke model Restoration of cognitive function in SAMP8 by antisense with co- administered PACAP27 				
Amyloid efflux transport protein: LRP-1 or low density lipoprotein receptor related protein-1	 Reduction of LRP-1 in brain Reduction of amyloid efflux Onset of cognitive dysfunction 				
Preproenkephalin	 Reduction of prepro & enkephalin. Increased avidity for alcohol. 				

Pituitary Adenylate Cyclase Activating Polypeptide

Discovered by Akira Arimuar (Tulane, New Orleans) 38 & 27 AA polypeptides in VIP/PACAP/Secretin Family PACAP38 Powerful Neurotrohic in vitro: fmol reverses gp120 neurotox

in vivo: iv injection reverses 4 vessels stroke 24 h after ischemia

PACAP27 Transported out of brain

PACAP 27 Brain-to-Blood Transporter: Beta-F1 ATPase (ATP synthase beta subunit)

Extra-membrane component of mitochondrial ATPase

Apolipoprotein A-1 receptor: transports HDL into hepatocytes

Enterostatin (pentapeptide) receptor in neurons

Inhibiting Efflux Systems with Antisense

Rationale: Brain-to-blood Transporter for Pituitary Adenylate Cyclase Activating Polypeptide (PACAP27)

Beta-F1 ATPase (ATP synthase beta subunit)

Dogrukol-Ak, JCBF&M: 29: 411-22, 2009

Stroke Model: MCAO-mouse

Alzheimer Model: SAMP8 mouse

Passive Diffusion

-Non-Saturable- Lipid Solubility/ SQRT(MW)

Morphine Ethanol Nicotine

Measured BBB Permeability of 9 Incretin Peptides

Varying in Exendin-4 Acylation Liraglutide Lixisenatide Pegylation Semaglutide Peptide 17 Charge Peptide 18 Peptide 20 Lipid Solubility (-0.6 to -2.7) DA3-CH DA-JC4 MW (3751-5420; 44,473) Single (GLP-1) vs Dual (GLP-1+GIP) Agonists

Salameh, TS et al Biochem Pharmacol, 2020 Rhea, EM Tissue Barriers, 2023

Mucopolysaccharidosis type VII Sly Syndrome

Lysosomal storage disease:

Deficiency of ß-glucuronidase (GUS): 300 kDa tetramer

Results in accumulation of Glucosaminoglycans (GAGS) in brain and peripheral tissues

GUS internalized at cell surface by mannose 6phosphate/insulin-like growth factor II receptor (M6P/IGF2R)

How to Deliver GUS to Brain?

Effects of IV GUS Treatment

	Peripheral Tiss	ues Brain
Neonates	Recovery	Recovery
Adults	Recovery	No Recovery

Leaky Neonatal BBB vs Saturable Transport System

GUSB Transport Declines with Maturation

GUSB Findings

Transport by M6PR can be Re-Induced in the Adult with Epinephrine

Requires both Alpha₁ and Alpha₂ Adrenergic Activity

Effect is Immediate and Directly at the BBB

Extracellular Vesicles

From: Batrakova & Kim J Control Release 219: 396-405, 2015

Exosomes Cross the BBB:

	SCC-90		MEL526		SCC-7		Primary-T Cell	
	Saline	LPSx3	Saline	LPSx3	Saline	LPSx3	Saline	LPSx3
Mean ± SEM	4.905 ± 0.601	8.098 ± 0.296	4.676 ± 0.375	$\frac{1.081 \pm 1.064}{1.064}$	2.651 ± 0.318	2.423 ± 0.312	9.731 ± 2.372	9.000 ± 3.147
P value	0.0	007	0.0046		0.6155		0.0119	

Treatment	Exosome Source	Lung	Brain	Kidney	Liver	Spleen	
LPS	J774A.1						
LPS	NIH-3T3						Increase
LPS	Primary T Cell						
LPS	HaCaT						
LPS	SCCVII						Decrease
LPS	MEL526						
LPS	MDA-MB-231						No Change 📘
LPS	PCI-30						
LPS	SCC-90						
LPS	Kasumi						
WGA	J774.1						
WGA	NIH3T3						
WGA	Primary T Cell						
WGA	НаСаТ						
WGA	SCC-7						
WGA	MEL526						
WGA	MDA-MB-231						
WGA	PCI-30						
WGA	SCC-90						
WGA	Kasumi						

Path Analysis

Insulin Levels 30 min After INL Delivery

%Injection

per gram

30 min

 0.288 ± 0.070

 0.209 ± 0.052

 0.265 ± 0.071

 0.193 ± 0.046

 0.182 ± 0.021

 0.158 ± 0.017

 0.271 ± 0.054

 0.121 ± 0.019

 $0.162 \pm .023$

Rhea et al JAD 2017

Intranasal insulin transport is saturable

n =46-48; * p<0.05, ** p<0.01, # p<0.001; 4x10⁵ cpm/mouse

Human Intranasal Insulin: Dose vs Hippocampal Concentration

Memory: Object Recognition

Top 10 Pathways Changed in Aged +/- Insulin

Acute Insulin

AGE

Table. T Cell Receptor Signaling Pathway Genes

Gene	Gene Symbol	LogFC	P Value	Effect of Age	Acute		
CD3 antigen, delta polypeptide	Cd3d	6.484	0.0261	Up			
CD3 antigen, gamma polypeptide	Cd3g	5.449	0.0231	Up			
CD3 antigen, epsilon polypeptide	Cd3e	4.378	0.0380	Up			
CD247 antigen	Cd247	3.281	0.0030	Up	1		
CD28 antigen	Cd28	3.075	0.0007	Up	1		
linker for activation of T cells	Lat	1.787	0.0106	Up	-		
programmed cell death 1	Pdcd1	1.425	0.0013	Up			
CD4 antigen	Cd4	1.365	0.0348	Up			
protein tyrosine phosphatase, receptor type, C	Ptprc	1.167	0.0015	Up	•		
lymphocyte protein tyrosine kinase	Lck	1.135	0.0282	Up			
While there were 15 genes that fit this pathway, only the							

Top 10 genes affected by age based on LogFC are reported here

CONCLUSIONS

Many Biologics (& their analogs) DO Cross the BBB In Amts that Affect Brain Function Saturable Passive Diffusion Adsorptive Transcytosis (?)

Peptides Regulatory Proteins Antisense Molecules (Phosphorothioates) Some Lysosomal Enzymes (e.g. GUSB) Neonatal - M6PR Inducible – alpha1 and 2 adrenergics Exosomes Intranasal Route (Insulin)

Kristen Kristen Baumann Weaver Shelly Cassidy Noonan Erickson

Rachel

Mohamed

ogsdon

Taka

Fujimoto

Omer

Lindsey

hopp Williams

Elizabeth Rhea May Reed

Friends, Colleagues, & Graduate Students Shelly Erickson **Kristin Bullock** Lawrence Maness **Sue Farr** Abba Kastin Vijya Kumar Naoko Nonaka **Mike Niehoff Pete Hayden John Morley Dongfen Yuan** Sam (Sandra) Robinson **Tessandra Stewart** Jing Zhang **Kate Farrell** Xiang Yi Laura Jaeger **Vicki Akerstrom** Sasha Kabanov **Melita Fasold** Kim Hansen **Kathy Wolf** Junichi Matsumoto **Enrique Gutierrez Therese Salameh**