

Bringing MAM to the next level:

Thermo Scientific MAM 2.0

Thermo Fisher Scientific MAM Team

Hao Yang, Ph.D.

WCBP 2022

1

The world leader in serving science

A complex problem: drug quality and safety

Thermo Fisher S C I E N T I F I C

Quality by Design

Cocess Design

Potency

Does the drug have the expected effect? (e.g. CDR complementation)

Knowledge

How do changes effect the therapeutic? (e.g. Oxidation)

Quality

How do changes in process effect the product? (e.g. Glucose concentration on glycoforms)

Definition of critical quality attribute (CQA)

A physical, chemical or biological **property or characteristic of a drug** product that should be within an appropriate limit, range, or distribution to **ensure the desired product quality**.

Thermo Fisher

SCIENTIFIC

Christine Nowak, et al, mAbs, 2017; 9(8):1217-1230.

The concept of MAM – the LC-MS based multi-attribute method

Thermo Fisher

Multiple workflows are required for quality control of biopharmaceuticals

HR MAM: First Step of a Shared MAM Journey

Peptide Sample MS/MS Data **From Research To Routine** Mapping Preparation Acquisition Thermo Scientific[™] BioPharma Finder[™] Software Bf **Target Peptide** BioPharma Finder Workbook **Attribute Characterization** S. 60 **Attribute Monitoring and** Peptide **New Peak Detection** Cm Chromeleor CDS Thermo Scientific[™] **Chromeleon**[™] **Chromatography Data** System (CDS) Thermo Scientific™ Reporting MS1 Only **CQA** Q Exactive[™] Plus Hybrid **Acquisition** Monitoring Quadrupole-Orbitrap[™] and NPD Mass Spectrometer

Continued Conversations and Partnership

ThermoFisher

Engagement with Partners

MAM user meetings

- Identified gaps in early MAM offerings
- Provided input on future requirements
- Defined major themes for improvement

Customer-Prioritized MAM Features

Thermo Scientific MAM 2.0: Purpose-Built MAM Solution

MAM 2.0: Straight through to Breakthrough

An Ecosystem from Development to QC

Thermo Scientific™

Vanquish[™] Horizon or

Flex UHPLC system

Development

Orbitrap Exploris 240 Mass Spectrometer (MS, MS/MS)

Thermo Scientific™ Vanquish[™] Horizon or **Flex UHPLC system**

Orbitrap Exploris MX Mass Detector (Full MS only)

QC

- Extended Life Cycle
- Ease of Operation

Thermo Fisher

- Robustness
- Cost Effective

- **Common SW and HW Platform**
- **Consistent Results**
- **Direct Method Transfer**

Fit- for- Purpose

MAM 2.0: An Ecosystem from Development to QC

Compliance-Ready, Scalable, Fit-for-Purpose

Thermo Fisher

Compliance-ready

Fit- for- Purpose

MAM 2.0: Attribute Characterization

Confident attribute identification, Data security, Ease of collaboration

PQA Identification – Confident and Comprehensive

ThermoFisher SCIENTIFIC

Simplify complex processing with superior algorithms

Kinetic prediction model

Attribute Characterization

PQA Identification – Confident and Comprehensive

ThermoFisher

Prediction algorithm enables identification of expected and unspecified modifications

Kinetic prediction model

- Expected and Unspecified PTMs
- Sequence Variants
- Host Cell Proteins

Single workflow, Fast Processing!

engle workhow, rust rocest

Attribute Characterization

Fit-for-Purpose

PQA Review and Reporting

Intuitive Interface, Customizable Reports

Central of Decision Operation

Sequence Coverage Map

thermo Scientific BioPharma Finder

Customizable Report Templates

ar 📄 Parameters 📄 Process and Review 💽 Mary	Target Poplide Workbook	inufactio;			Choose a report template	e you can start from:			
t the components for the user definable protects coverage map.									
	Protein Countage Map	Q - 1 X							
hanna Finder Targeted Poptide Mapping ^{16, 9,2855}	Sequence Coverage Map Created on 0004199 by jossifier auton Date Folders = Officieriemedire autor/Dedeed/Dedee	e hanna Faulter Tanasted Perside Vanezier							
792	Mainum MS Signal = 93000 Dan File = Control JMSMS_192.nm Protone = Trypin								
43.81 59.00 53.82 74.73 harma Finder Targeted Puptide Mapping No. 6 5353	Potem Dumber of MD Peaks MD Peaks Area beganice Cover 1NieMdab_LC 171 26.0% 100.0% 2NieMdab_HC 366 59.3% 98.7% 3trgania 5 0.2% 20.4%	rage Abundance (soc) 33.96% 65.21% 0.8283%							
784	Maisuus Recovery = 1% Maisuus Recovery = 1% Maisuus Confidence = 0 Maisuus Confidence = 00				Basic Peptide	Disulfide Bond Basic	Disulfide Bond		
5344 41.0 61.31 53.20 74.80 41.0 61.31 53.20	Color code for peptide recovery permission of the form of the offending of the content of the power pool for power				Mapping Template	Template	Template Lysozyme		
au 10	NistMab_LC				Thermo BioPharma Finder 5.0				
*1>	DIQMTQSPSTLSASVGDRVTITC 311	SASSRVGYNHWYQQKPGKAPK	Modification S	lummary	scientific BioPharma	Finder			
	21 19	12 159 180	moundation c	arring y	🔄 Honse 💟 Peptide Mapping	Analysis 📝 Load Results 🔀 Queue 📋	Parameters Process and Review 💟 Mapping	Report	
		S6		10 I 0 I 0	Ph. Case	de Provincia de la			
	SKLASGVPSKFSGSGSGTEFTLT	thermo BioPharma Finder		Found Name I File Head & A	Copen Green	Deamidation % Abundance			
	(March Contract March	Home Poptice Mapping Analysis Load Results	Conce Parameters Process and Review Manying Target Popular Worklook		50.00				
		O Mediator Surray		Manuf Mayor Ser	45.00				
		Multi-stor Pruty	• 3.1 MadfassePar	S Aserdaro & Debut O Game - 10	40.00				
		gi Couter Poter Poter	ngdar Minimun Salendy Dauge State Minimum Minimum Maddoction Level (k) PA Salendy (%) (N) (N) (k)	X332+Creamidation	35.00				
		84003 byjentfeautor CitalibardebiCatorier Typen	210% 110% 100% 5e		25.00		MAM_Control_MSM5_9 MAM_Control_MSM5_1		
			76 92 34	Transf &	20.00		MAM_Thermal_MSNS_5		DDE
		Poten Hodifaction Calegory	Normality Predicted Time Statt Conference Recovery Control (MS2, 10, 88	Ta	15.00				FUF
		1 E Nothel X -1080-Deniation -Deniation	12N 12Fk 100/06 6155 12	4.65	5.00				Event
		Kothik,HC K28-Jesniator -Desniator Kothik HC K28-Jesniator -Desniator	24N 22N 102N 122N 45N 42N 102N 422N	1	0.00 NV0s Descritation			•	Excel
		5 E Nichtleb, HC NUX-Desnitation -Desnitation 6 E Nichtleb, HC NXX-Desnitation -Desnitation	425 125 1005 1245 0 585 585 805 805	1	N289+Deamidation N318+	Deamidation -N392 +Deamidation		· · · · ·	
		7 E Nidflik /C N33-Demidston -Demidston 8 E Nidflik JC N35-Demidston -Demidston	408 228 228 2245 2545 25 238 248 225 226 27	Cop Cop	Nethias HC 209 -Desmitteton	NUM Create MINE & MAN Collevel N289-Desmiliatory D.08	0.07 1.20		
		Il Notile, H N35-Deenidator -Deenidator	238 228 1868 4128	1	NetWals_HC 305 -Oxemidation NetWals_HC 318 -Oxemidation	N300-Deamidation 0.06 N318-Deamidation 0.06	0.05 1.38 0.06 0.56		
		e(NetNag, HC 328 +Cesmidation NetNag, HC 352 +Cesmidation NetNag, HC 352 +Cesmidation	N328-Deamidation 2.36 N322-Deamidation 1.38 N425-Deamidation 0.00	0.41 49.46		
		Components	Contractor Transmission (1997)						
		β ≣ + 1041 NL 10455000	Poptie legence Modification Star	vil lan					
		5 9 1 1 = 1 1 g		1410 1445					
		8 2 2 Composed 62 2631-055-2561241	OB22-Deaml, STPESMERTANSWOP, Considering ASIT						
		8 4 2 Composer 60 26234-035 - 2501201a 8 5 2 Composer 659 26334-035 - 2501201a	STYTEMUTATIONOFL. Now NOT-basel. STYTEMUTATIONOFL. DataStation NOT						
		8 6 2 Composent 668 2/034-KI95 - 254112N1m 8 7 2 Composent 668 2/034-KI95 - 254112N1m	AND*-buest. G7/F5554/TMISHOOFL Deamldation NDT c-NDT-bhost. G7/F5554/TMISHOOFL NH3 low -NDD	The second second					
		T T Contract In Contract Martine	and an and a second sec	× ×					
					Title Page Summary Compone	Int Table Theoretical Mass vs Observed Mod	ification Summary All Oxidation Deamidation Is	somerization N	

Thermo Fisher

Attribute Characterization

Enhanced Collaboration at Global Scale

Data security with intelligent version control

Scientist 2		Experiment	Name Introl Thermal Version 2 Current 1 Revert	Created (10/6/202 10/6/202	Version 2 On 1, 10:05:12 AM 1, 9:52:11 AM	User Name Scientist2 User Name Scientist2 Scientist1	Status Completed Status Completed Completed	Completion Time 10/6/2021, 10:05:10 AM Description Modified platform method Default platform method fo	Last Modified 1 10/6/2021, 10:05:10 AM for PQA identification
Welcome Sign into your account		Nam Type: Para User Date EXP	Name: NIST Control Thermal Oxidized Type: Peptide Experiment Parameters Version 1 Username Scientist1 Date modified 10/6/2021, 9:52:11 AM			Version 2 Scientist2 10/6/2021, 10:05:12 AM	Version Comparison V		
Manager		Proce PEA Abso S/N 1 IDEN Mass	essing Method KDETECTIONPAF lute MS Signal Thre: Threshold ITIFICATIONPARA Changes for Unspe	AMETERS shold (MS Noise Le AMETERS icified Modification	s (VIST Stress Default Method 330000 65 0 to 0		NIST Stress Modified Method 530000 265 -129 to 169	Changed Changed Changed Changed
Accelerated Method Optimization!	!	Enab PRO Varia	le Residue Deletion TEINSEQUENCE	INFO		ialse 3in->Pyro-Glu(NTerm), Lys(CTer	rm), Lys Loss(CTerm), Deamid	(True) Gin->Pyro-Glu(NTerm), Lys(CTerm), Lys Loss(Changed CTerm), Dearnidat Changed

Attribute Characterization

Enhanced Collaboration at Global Scale

PQA selection for targeted monitoring

DI TR	hermo	BioPha	rma Finder 5.0										
the	erm	O E	ioPha	rma F	inder								
SCI	eriu	IIC										_	
	Hor	ne 🚺	Peptide M	apping Ana	lysis 📃 Loa	d Results 📃 Quer	Je 📄 Paran	eters	Process and Review	Maj	oping 📄	Report	Target Peptide Workbo
											Г		
	Proc	ess and F	leview 🔽	Mapping	Target Pept	tide Workbook		(Component	393	2:E296-R	.304 =	EEQYNSTYR
Resu	ilts							(Component	399	2:E296-R	304 =	EEQYNSTYR
	ø	~		No.	Identification	Peptide Sequence	Modification	(Component	401	2:E296-R	30 <mark>4</mark> =	EEQYNSTYR
	4		Aa 🖛	= + 1	<u>Aa</u> -	= FEOYNSTYR - X	<u>A</u> a - 1	(Component	405	2:E296-R	.304 =	EEQYNSTYR
۲	1	1	Component	393	2:E296-R304 =	EEQYNSTYR	A2G2F	(Component	406	2:E296-R	304 =	EEQYNSTYR
۲	2	1	Component	399	2:E296-R304 =	EEQYNSTYR	A3G2F						
۲	3	1	Component	401	2:E296-R304 =	EEQYNSTYR	A2G2F	(Component	408	2:E296-R	.304 =	EEQYNSTYR
۲	4	1	Component	405	2:E296-R304 =	EEQYNSTYR	A2G1F		Filters	,			FFOYNSTYR
۲	5	J	Component	406	2:E296-R304 =	EEQYNSTYR	A2G0F		E All Car			Ľ-	
۲	6	1	Component	408	2:E296-R304 =	EEQYNSTYR	A2G1F		Export All Con	ponent	s •		EEQYNSTYR
۲	7	J	Component	412	2:E296-R304 =	EEQYNSTYR	A1G1F		Export Checke	d Comp	onents >		FEOVNISTVR
۲	8	2	Component	415	2:E296+R304 =	EEQYNSTYR	A2G1F		Create .mgf	File		Ë	LEGINOTIN
*	9		Component	416	2:E296-R304 =	EEQYNSTYR	M5	0					EEQYNSTYR
	10		Component	431	2:E296+K304 =	EEQYNSTYR	M5	0	Run De Nov	o Proce	ssing		FEOVINSTYR
æ	12		Component	440	2:E290-K304 =	EEQTINSTYR	A1G1F	Ĥ	Show Comp	onent li	formation	n E	LEGINGTIN
	13		Component	441	2:E296-R304 =	EEQYNSTYR	A1G0F	(Cause As Dentis		haalth		FEOYNSTYR
	14		Component	448	2:E296-R304 =	EEQYNSTYR	A1G0F		Save As Peptic	e work	DOOK	All	
۲	15		Component	453	2:E296-R304 =	EEQYNSTYR	A1G0	Ň	component	-147	2.2230	C 1 1	
۲	16	1	Component	454	2:E296-R304 =	EEQYNSTYR	A1G0	(Component	448	2:E296	Checke	a
۲	17	1	Component	495	2:E296-R304 =	EEQYNSTYR	A1Sg1F		Component	452	2-E206-P	204 -	FEOVNISTVR
۲	18	1	Component	499	2:E296-R304 =	EEQYNSTYR	A2S1G1	Ľ,	component	435	2.L290*N	.504 =	LEQINGITI
۲	19	1	Component	500	2:E296-R304 =	EEQYNSTYR	A1Sg1F	(Component	454	2:E296-R	.304 =	EEQYNSTYR
	20	1	Component	504	2:E296-R304 =	EEQYNSTYR	Unglycosylated						

Workbook Creation

PQA Selection

Attribute Characterization

ThermoFisher SCIENTIFIC

17

MAM 2.0: Attribute Monitoring and New Peak Detection

Accurate, confident detection and quantification of targeted attributes and new peaks

PQA Monitoring – Made more connected

Thermo Fisher S C I E N T I F I C

Target Peptide Workbook

- Accurate Component Detection
- Intelligent Peak Integration
- PQA Quantitation
- Customized Reporting
- New Peak Detection

Import target peptide workbook from HyperBridge to Chromeleon

· Seamless transfer of target peptide workbook

• Data sharing at global scale

PQA Monitoring – Higher confidence

Thermo Fisher SCIENTIFIC

Peak apex alignment for confirming ions Within set mass tolerance 110 (+2) DTLMISR 5 - Ion = 418.2174-418.2240,418.7188-418.7254,419.2186-419.2254,419.7191-419.7259 Apex FTMS + p ESI Full ms [200.0000-2000.0000] 100 % 47 - (+2) DTI MISR 418.2201 5.0e8counts 1.4 ppm 75-2.6 ppm min -5.0e7 lon = 418.2174-418.2240 47 - (+2) DTLMISR 50-3.0e8 418.7210 1.0 ppm T=17.46; Area=2.7e+ counts 2.0e8 25-4.8 ppm 419.2216 5.0e7 419.7205 0-47 - (+2) DTLMISR m/z 4e8 -10] RT=17.46; Area=1.2e+7 counts 417.15 418.00 419.00 420.00 420.70 .0e8-NISTmAb_01 112.5 100 min .0e7 7 2 lon = 419.2186-419.2254 87.5 Matching isotope 47 - (+2) DTLMISR 4.5e7 75 RT=17.46; Area=3.6e+6 counts distribution nte 62.5 2.5e7 Relative 50 37.5 min 5.0e6 25 47 - (+2) DTLMISR 12.5 RT=17.48; Area=4.7e+5 counts 7225 min (+2) DTLMISR 17 25 17 50 17 75 16 96 17 96

Composite scoring to ensure accurate component detection

- Target Peptide Workbook ٠
- **Accurate Component Detection** >
- Intelligent Peak Integration •
- PQA Quantitation ٠
- **Customized Reporting** ٠
- **New Peak Detection** ٠

Fit- for- Purpose

PQA Monitoring – Made simpler

Select detection reference for consistent start and stop peak integration

Define mass tolerance threshold per component

- Ability to mass resolve peaks that are difficult to resolve chromatographically
- N387 deamidation (PENNYK peptide)

Ease of use

Accurate Component Detection

Intelligent Peak Integration

Target Peptide Workbook

• PQA Quantitation

٠

٠

- Customized Reporting
- New Peak Detection

Attribute Monitoring

Fit- for- Purpose

PQA Monitoring – Made simpler

Select detection reference for consistent start and stop peak integration

Define mass tolerance threshold per component

- Ability to mass resolve peaks that are difficult to resolve chromatographically
- N387 deamidation (PENNYK peptide)

1.0e6

0.0e0

3.5e6

3.0e6

2.0e6

1.0e6-

0.000

-5 0e5

Attribute Monitoring

- Customized Reporting
- New Peak Detection

50 Kelative 37.5 25

12.5

(+3) GFYPSDIAVEWESNGQPEN[Deamidation]NYK

/ Rel. Peak Area Isotopic Distribution / Compound View

min

44.55

Fit- for- Purpose

•

.

>

•

fx 🔹 🗙

PQA Monitoring – Accurate Quantitation

Target Peptide Workbook

- Accurate Component Detection
- Intelligent Peak Integration
- PQA Quantitation
- Customized Reporting
- New Peak Detection

Thermo Fisher

Ease of use

PQA Monitoring – Customizable

- Target Peptide Workbook •
- Accurate Component Detection ٠
- Intelligent Peak Integration ٠
- PQA Quantitation ٠
- **Customized Reporting** >
- New Peak Detection •

Sequence Info NIST MAD MSM 1 0 72.01 115.00 17.25 EQYNSTYR Glycos **Ratio Table** 42015 42028 ASCOF A1G6 3.95e+8 3.79e+8 2.44e+8 2.96e+8 3.23e+8 3.89e+8 3.81e+8 2.30e+8 3.25e+8 3.25e+8 9.37e+7 9.66e+7 5.27e+7 7.79e+7 7.72e+7 3.10e+7 2.86e+7 1.86e+7 2.00e+7 2.41e+7 2.76e+7 2.58e+7 1.71e+7 1.92e+7 2.30e+7 4.31e+6 4.60e+6 2.67e+6 3.65e+6 3.63e+6 5.39e+6 5.52e+6 2.87e+6 2.78e+6 3.87e+6 8.20e+6 7,45e+6 4.82e+6 6.71e+6 6.43e+6 4.55e+5 4.65e+5 2.03e+5 4.08e+5 4.82e+5 1.20e+5 1.34e+5 6.49e+4 3.52e+4 1.17e+5 1.02e+7 1.01e+7 4.66e+6 8.28e+6 8.85e+6 IST mAb MSOnly 2 0 NIST mAb_MSOnly_3_05 NIST mAb PRTC_MS_1_12 IST mAb PRTC MS 2 1

Glycosylation

Thermo Fisher

NOcU18 17:01

21/Dec/18 15:14

Peak Area Table

Graphical View of the Result

Ease of use

Attribute Monitoring

emoGE_NISTIN_b_Training_17Oct20

Exactive Plus

PQA Monitoring – No missed information

Thermo Fisher

Ease of use

Non-targeted MS processing

Mass Analyzer algorithm harmonization for new peak detection

• Target Peptide Workbook

- Accurate Component Detection
- Intelligent Peak Integration
- PQA Quantitation
- Customized Reporting
- New Peak Detection

Find All lons in the Run *		
eak Detection		
Absolute MS Signal Threshold (MS Noise Level * S/N Threshold)	1.03E+6	
MS Noise Level	5,300.00 🔹	
S/N Threshold	195.00	
Beginning Peak Width (min)	0.17	
Typical Chromatographic Peak Width (min)	0.20	
Ending Peak Width (min)	0.53	
Maximum Chromatographic Peak Width (min)	2.55	
Use Restricted Time		2
Time Limits	5.00 - 70.01	
on Alignment		
Maximum Retention Time Shift (min)	1.47	
Show Advanced Parameters		
eptide Identification	010 01	
Search by Full MS Only		
Use MS/MS	Use All MS/MS v	
Maximum Peptide Mass	11,000	
Mass Accuracy (ppm)	6 🗘	
Minimum Confidence	0.80	
	1	
Maximum Number of Modifications for a Peptide		
Mass Accuracy (ppm) Minimum Confidence	6 2 0.80	

Attribute Monitoring

ontrol Injec	tion	
\$	Reference Sample 3 ug IgG	
lect Task	To Be Performed	
Find All Ions	in the Run	
Auto-cor	npute basic parameters tion	Preview
	Absolute MS Signal Threshold (MS Noise Level * S/N Threshold)	1033500
	MS Noise Level	5300.00
	S/N Threshold	195.00
	Beginning Peak Width (min)	0.17
	Typical Chromatographic Peak Width (min)	0.20
	Ending Peak Width (min)	0.53
	Maximum Chromatographic Peak Width (min)	2.55
	Time Limits (min)	5.00 🗘 - 70.01 :
	Mass Tolerance (ppm for high-res or Da for low-res)	6.00
	Mass Accuracy	6.00
Alignme	nt	
	Maximum Retention Time Shift (min)	1.47

Identical parameter settings used for NPD

PQA Monitoring – No missed information

Thermo Fisher

Mass Analyzer algorithm harmonization for new peak detection

Positive control: 15 new peaks from PRTC spiked into NISTmAb digest

- Target Peptide Workbook
- Accurate Component Detection

Non-targeted MS processing

- Intelligent Peak Integration
- PQA Quantitation
- Customized Reporting
- New Peak Detection

Thermo Scientific Pierce Peptide Retention Time Calibration mixture components and properties.

The peptide sequences, peptide masses and chromatographic behavior of each component of the Pierce Peptide Retention Time Calibration Mixture are given below. The position and identity of the heavy isotope-labeled amino acid in each sequence is indicated in bold.

P	eptide Sequence	Mass	Hydrophobicity Factor (HF)
1	SSAAPPPPPR	985.5220	7.56
2	GISNEGQNASI K	1224.6189	15.50
3	HVLTSIGEK	990.5589	15.52
4	DIPVPKPK	900.5524	17.65
5	IGDYAGI K	843.4582	19.15
6	TASEFDSAIAQDK	1389.6503	25.88
7	SAAGAFGPELSR	1171.5861	25.24
8	ELGQSGVDTYLQT K	1545.7766	28.37
9	GLILVGGYGTR	1114.6374	32.18
10	GILFVGSGVSGGEEGAR	1600.8084	34.50
11	SFANQPLEVVYSK	1488.7704	34.96
12	LTILEELR	995.5890	37.30
13	NGFILDGFPR	1144.5905	40.42
14	ELASGLSFPVGF K	1358.7326	41.18
15	LSSEAPALFQFDLK	1572.8279	46.66

Attribute Monitoring

PQA Monitoring – No missed information

ThermoFisher

Non-targeted MS processing

Target Peptide Workbook

- Accurate Component Detection
- Intelligent Peak Integration
- PQA Quantitation
- Customized Reporting
- New Peak Detection

Mass Analyzer algorithm harmonization for new peak detection

Positive control: 15 new peaks from PRTC spiked into NISTmAb digest

Attribute Monitoring

•

Thermo Fisher **PQA Monitoring – No missed information** SCIENTIELC Mass Analyzer algorithm harmonization for new peak detection Non-targeted MS processing Removing targeted components to avoid false positives Target Peptide Workbook • Component Results Filter (0 of 662) with rule "Filter Targeted Components Accurate Component Detection • Filter targeted components which match within the following tolerances: Apply targeted filter to filter out Retention time: (0.50 min () 2.00 % **PRTC** components **Intelligent Peak Integration** • M/z: O 0.00000 amu 5.00000 PPM PQA Quantitation • Component Number RT (min) M/Z Charge State Mono Mass Exp. Control MS Area MS Area MS Area Ratio **Customized Reporting** ٠ **New Peak Detection** \geq

All results have been filtered

Fit- for- Purpose

Summary: Attribute Monitoring and New Peak Detection

Attribute Characterization Development

- A software ecosystem to facilitate collaboration at global scale
- Composite scoring to ensure accurate detection of targeted peptides
- Intelligent peak integration to ensure accurate quantification
- Improved new peak detection (NPD)

Fit- for- Purpose

MAM 2.0: CQA Monitoring in QC

Compliance-Ready, Built-for-Purpose, Simplicity

Orbitrap Exploris MX: the mass detector built for QC

- Built on the same Orbitrap technology
 - · Full MS scans only
 - Resolution: up to 180K @ m/z 200
 - Mass accuracy: 1-point calibration achieves <3 ppm RMS drift over at least 4 weeks
 - m/z range: 40-3000 (up to 8000 with BioPharma option)
- Consistent unit-to-unit performance
- Compliance-ready
- Ease of operation
 - Direct method transfer from Orbitrap Exploris 240
 - Automatic workflow execution
- Extended life cycle
- Cost effective

Compliance-ready

Orbitrap Exploris MX: Consistent Performance

Thermo Fisher

M5

Unglycosylated

< 3ppm mass deviation over 6 weeks

Consistent CQA measurement with RSD< 4%

Orbitrap Exploris MX: Consistent Performance

ThermoFisher

15 peptides, RT across gradient %CV between 0.13% to 2.89%

Consistent CQA measurement with RSD< 4%

Consistency with Easy Method Transfer to QC

Seamless method migration from development to QC

Orbitrap Exploris 240 Mass Spectrometer

Thermo Fisher

SCIENTIFIC

CQA Monitoring in QC

- Seamless method migration from development to QC
- Secure method transfer
- Easy workflow setup and execution for users at all levels

MAM 2.0: Built for Compliance End-to-End

Summary : CQA Monitoring in QC

Compliance-Ready, Built-for-Purpose, Simplicity

- Orbitrap Exploris MX delivers consistent and robust performance
 - ✓ Same platform as Orbitrap Exploris 240
 - ✓ Same high-quality results with same instrument parameters.
 - ✓ Mitigates method re-development for QC transfer
- Automatic workflow execution
- Chromeleon CDS complete suite of compliant tools

Thermo Fisher

Compliance-ready

Fit- for- Purpose

MAM Expert Support Team

- Supported by a dedicated MAM focused team.
 - Application scientists
 - Service engineers
 - Software experts
- Combination of on-site and remote training customizable to meet your needs.
- A dedicated support process to quickly connect you with the right MAM expert.

MAM 2.0: System Performance Evaluation Tests (SET)

- Instrument performance tested for MAM application requirements
- An LC-MS test run by MAM support engineer to evaluate system performance against a comprehensive set of acceptance criteria that are relevant for peptide mapping and monitoring

https://www.thermofisher.com/us/en/home/industrial/pharma-biopharma/biopharmaceutical-analytical-testing/multi-attribute-method.html

Support

Summary: Thermo Scientific MAM 2.0

End-to-end, compliance-ready platform for deployment from development to QC

Attribute Monitoring

Thermo Scientific MAM 2.0

Support

development & quality control

come together

Thermo Fisher s c | e N T | F | c

Compliance-ready

Fit- for- Purpose

Acknowledgement

- Digital Transformation team
- Orbitrap Exploris MX team
- HPLC team
- Chromatography Consumables team
- Application team
- Marketing team

Various industry partnerships

Thank you

Questions

