

What's in a KASA? Knowledge-Aided Assessment and Structured Application (KASA) For Biological Products

Brian Roelofs, Ph.D. Lead Interdisciplinary Scientist Office of Biotechnology Products, Office of Pharmaceutical Quality CDER | US FDA

WCBP 2022 "One World, One Submission"

January 27, 2022

A quality product of any kind consistently meets the expectations of the user.

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Objectives

- Understand the Key Benefits of the <u>K</u>nowledge-aided <u>A</u>ssessment and <u>S</u>tructured <u>Application</u> (KASA) System
 - Foundational Knowledge Management
 - Informatics-aided risk assessment
 - Alignment of data-driven assessments and outputs
- Identify the Unique Opportunities and Challenges for Biological Products and KASA
- Explain the General Development approach for KASA modules for Biological Products in CDER

One World, One Submission – One Assessment

KASA is an internal assessment tool intended to streamline practices already in place for assessments, increasing efficiency and consistency KASA will support:

- Efficiency gains through focused assessment of risk parameters
- Streamlined assessment using concise dropdown menus to replace long written text, generation of direct links to a page/table/figure in submission
- Consistent assessment across product lifecycle
- Standardized knowledge management/analytics

Application Assessment Challenges

- Volume of new applications
- User fee program expectations
- Commissioner, Congress, the pharma industry, and the public expectations
- Technology advancements
- Complexity of Biological Products (OBP)

Internal Challenges

- Freestyle narrative assessment:
 - Unstructured text
 - Summarization of application information
 - "Copy and paste" data tables
- Cumbersome knowledge sharing and knowledge management
- Potential for subjective assessment based on the assessor's expertise and knowledge at hand

FDA Key Objectives of KASA System for Biological Products

- 1. Capture and **manage knowledge** during the lifecycle of a drug product
- 2. Establish **rules and algorithms to facilitate** risk identification, mitigation, and communication for the drug product, manufacturing process, and facilities
- 3. Perform computer-aided analyses of applications for a comparison of regulatory standards and quality risk across the repository of approved drug products and facilities;
- Provide a structured assessment that radically eliminates text-based **narratives** and summarization of information from the applications.

A risk-based assessment module for Drug Substance manufacturing

- Applies only to fed batch monoclonal antibodies
- Prototype applies to new BLAs (though framework can be adapted for supplements)
- Does not include microbiology and facility portion yet
- Designed to capture description for manufacturing steps, including:
 - Key manufacturing elements that are not characterized, but need to be described
 - Process Parameter Criticality assessment
 - Process Parameter Range evaluation

OBP KASA 1.x prototype: Key Features

- The process parameter risk assessment is based on a combination of the sponsor's data and accumulated knowledge in the field
- Flags for assessment issues and IRs (to facilitate discussion between primary and secondary assessors)
- Able to capture revisions during assessment cycle
- Provides a clear connection between available development data, validation results, and the proposed PAR for critical process parameters
- Generates a summary output to be integrated in assessment document
- Designed to be consistent with ICH Q12 concepts

KASA Decision Making Overview

KASA at a Glimpse (Under Construction) – DS Manufacture

Knowledge-Aided Assessment and Structured Application

BLA Overview					
Application path:	BLA under 351(a)		~		
• Pr	iority Review	O Standard Review			
BLA #:	000001 ×	Applicant name:	Lothlorien Labs		
Proprietary name:	Galadriela	Non-Proprietary name/USAN:	OneRingOneSubmissionumab		
OBP systematic name:	TBD	Dosage form:	Liquid		
Strength potency:	10 mg/mL	Route administration:	IV		
Primary Assessor:	Frodo	Secondary Assessor:	Gandalf		

KASA at a Glimpse (Under Construction) – DS Manufacture

Select the Unit Operations included in the application

Cell cu Cell culture – V	ulture - Harvest Vial thaw & inoculation expansion	Cell culture – Production bioreactor Chromatography – Anion exchange	Cell culture – Seed bioreactor Chromatography – Cation exchange	Commor
Chromatogi	raphy – Hydrophobic nteraction	Chromatography – Mixed mode	Chromatography – Protein A	Unit Ops
Ultrafiltra	ation/Diafiltration	Viral filtration	Virus inactivation – Low pH	

 \sim

Yes

FDA

KASA at a Glimpse (Under Construction) – Viral Clearance FDA

Select a Unit Operation for viral clearance study:	Virus Inactivation - Low pH	
Does VC study used a modular or platform approach?	No	~

Process Parameters	Check Box (Link to Commercial Manufacturing Process)	Parameter Values		
Hold Constant				
Liquid pH		3.90-3.95		
Liquid composition (i.e. buffer composition and molarity)				
Protein concentration	2			
Time		5, 10, 20, 30, 55		
Temperature		14.5-15.4		
Scaled Down				
Liquid Volume				

Yes

 \checkmark

Conclusions

- KASA presents incredible opportunities for knowledge management, consistency in decision making, and improving efficiency
- The biological product KASA includes unique elements based on the nature of biotechnology products
- Prototype KASA modules for biological products are in stepwise development and the Drug Substance Manufacture component is undergoing an internal pilot for assessment

Acknowledgments

- Joel Welch
- Bazarragchaa
 Damdinsuren
- Kristen Nickens
- Fabiola Gomez
- Emine Guven-Maiorov
- Steve Kozlowski

- Sireesha Vardhineedi
- Christelle Yemeck
- Larisa Wu
- Andre Raw

- Former Members:
- Pick-Wei Lau
- Ramesh Potla

