

WCBP 2022 Conference Pandemic's Impact for Supply Chain: Regulatory Approaches to Manage Supply Chain Challenges for Single-Use Systems

Patricia F. Hughes, Ph.D. Sr. Scientific Advisor Office of Pharmaceutical Manufacturing Assessment Office of Product Quality FDA, CDER January 26, 2022

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Outline

- Current single-use system (SUS) supply constraints
- Regulatory management of post-approval changes to SUS
 - Approaches for reportable and non-reportable changes
 - Role of Pharmaceutical Quality System (PQS) and Quality Risk Management (QRM)
 - Proactive approaches
- Case studies
- Conclusions

Single-Use System (SUS)

- SUS are ready-to-use, closed and disposable bioprocessing equipment consisting of integrated and pre-sterilized components.
 - Components are most often sterilized using gamma irradiation.
 - A definition:
 - "An engineered process and equipment solution, most commonly assembled from components made using polymeric materials, which together create a system or unit operation design for time campaign use" (PDA TR 66).
 - Examples of SUS:
 - A sterile filling train composed of a set of sterile disposable bags, tubing sets, connectors, and filling needles.
 - A single use bioreactor composed of disposable sterile tank liner bags, tubing sets and connectors.
 - A SUS bag with an inline bioburden reduction filter and various tubing sets and connector devices for holding column fractions.

Current Supply Challenges

- SUS have been widely used in biomanufacturing for the last 5-10 years.
- Market demand is increasing due to a significant increase in the production of sterile drug and biologic products.
- Biopharmaceutical industry is experiencing challenges for the continued availability of the SUS for biomanufacturing:
 - Supply chain under stress with delayed deliveries:
 - Lead times for orders has increased from months to years.

Advantages of SUS

- Present advantages over traditional stainless-steel equipment or other multiuse equipment:
 - Provide for manufacturing flexibilities:
 - Simplified requirements for facility design, environmental controls and product changeover.
 - Streamlined manufacturing site transfers with the similar SUS process equipment.
 - Allow for improved microbial and cross contamination process control:
 - Operated as closed systems with integrated system components sterilized by gamma irradiation.

Supply Demands Continue to Increase

- Driven by a combination of factors, including:
 - Global market for biological products continues to expand.
 - Increasing adoption of advanced biomanufacturing technologies with high reliance on SUS:
 - Process intensification, continuous manufacturing, disposable sensors.
 - Current public health emergency (PHE)
 - Certain supplies of SUS prioritized with the implementation of the Defense Protection Act for COVID-19 therapies and vaccines.
 - SUS enable the availability of COVID-19 therapies with speed by providing manufacturing flexibilities during manufacturing site changes and product changeover.

SUS Supply Constraints

- Other factors:
 - Few or single-source suppliers:
 - Manufactures of SUS are concentrated in the US and Europe.
 - High degree of customization and lack of overall standardization:
 - Single-use components from different suppliers are always not interchangeable and replacement of components from different suppliers is not feasible.
 - Shipping/distribution disruptions during the PHE.

SUS Supply Constraints (cont.)

- More factors:
 - Most SUS are sterilized with gamma–irradiation using radioactive cobalt-60
 - Demand for gamma-irradiation is exceeding capacity and is increasing.
 - Limited construction of new gamma irradiation sites.
 - Lead time for SUS deliveries has increased due to a backup at the gamma sterilization sites.
 - Irradiation sites are highly regulated.
 - Few irradiation sites are available worldwide (mostly in Ontario, Canada).

Role of FDA

- FDA has recently received reports of SUS supply chain constraints and potential drug supply disruptions.
- FDA has and will continue to provide feedback to sponsors/applicants and mitigate shortages of medically necessary drugs.
- The following slides will provide an overview of some of the regulatory approaches that may be considered to address SUS supply constraints.
 - Focus on biological products, but the same approaches are applicable to other sterile drug products.

Managing Post-approval Changes

- Changes to an application must be managed in accordance with:
 - Applicable regulatory requirements described in 21 CFR 314.70 and 601.12.
 - Post-approval changes are categorized into three reporting categories (prior approval supplement [PAS], changes being effected [CBE30/CBE] or annual reports [AR]) based on the potential to have an adverse effect on product quality (major, moderate, or minimal).
- Guidance recommendations on how to comply with requirements are provided in several FDA Guidance documents.

FDA Guidance on Post-approval Changes

- Relevant guidance for biological products:
 - Changes to an Approved Application for Specified Biotechnology and Specified Synthetic Biological Products, 1997 (<u>https://www.fda.gov/media/75318/download</u>)
 - CMC Postapproval Manufacturing Changes for Specified Biological Products to be Documented in Annual Reports, 2021 (<u>https://www.fda.gov/media/106935/download</u>)
 - Chemistry, Manufacturing, and Controls Changes to an Approved Application: Certain Biological Products, 2021 (<u>https://www.fda.gov/media/109615/download</u>)
 - Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls information (R1) draft 2016
 - Q12 Technical and Regulatory Considerations for Pharmaceutical Products Lifecycle Management, 2021 (<u>https://www.fda.gov/media/148476/download</u>)
 - Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients (2016) (<u>https://www.fda.gov/media/71518/download</u>)
 - Q9 Quality Risk Management (2006) (<u>https://www.fda.gov/media/71543/download</u>)
 - Q10 Pharmaceutical Quality System (2009) (<u>https://www.fda.gov/media/71553/download</u>)

Examples of Post Approval Changes

- Potential changes to mitigate SUS supply constraints:
 - Change of suppliers (with or without a change in product contact material).
 - Different suppliers of filters, bag or connector systems.
 - Qualifying alternate suppliers of SUS.
 - Change similar components of different material or design.
 - Different process configuration; connectors, tubing, sampling bags, etc.
 - Change from bags to stainless steel tanks; reduce usage of SUS
 - Reduce the number of SUS components used in the manufacturing process.
 - Removal of redundant sterilizing filters.
 - Extend the use of components by increasing throughput.
 - Reduction of filter changeouts; reduce usage.
 - Qualify the re-use of components.
 - Reuse of vent filters.
 - Standardize SUS use across processes and manufacturing sites for part interchangeability.

Post-approval Changes: Reportable and Non-reportable

- To manage post approval changes, applicants should:
 - Review existing FDA regulations and guidance
 - Perform a thorough risk assessment before addressing SUS supply chain constraints in accordance with ICH Q9.
 - Determine the appropriate post-approval submission category to communicate post-approval changes to the FDA.
 - Manage changes to SUS not described in an application within the firm's pharmaceutical quality management system (PQS) (ICH Q10).
 - Non-reportable changes are the lowest risk changes to product quality and may be verified during routine or other inspections.

PQS and QRM

- Pharmaceutical Quality System (PQS) is a management system to direct and control a pharmaceutical company with regard to quality (ICH Q10)
 - All CMC changes to an approved product should be managed through a company's PQS.
- Quality Risk Management (QRM) is a systematic process for the assessment, control, communication and review of risks to the quality of the drug product across the product lifecycle (ICH Q9).
 - Integrated within the PQS and supports compliance with regulatory requirements.

Risk Assessment

- Applicants should perform a risk assessment to identify and address risk factors associated with a change in a SUS.
- Some risk factors to consider:
 - Intended use of the SUS in the manufacturing process and impact on product quality (risk level and associated impact on product quality).
 - E.g., Examples of high-risk changes are those involving a final product sterile filtration or viral filtration.
 - Presence of other risk reducing mitigating factors.
 - E.g., Use of redundant filtration steps with closed processing.
 - Process knowledge acquired over a product lifecycle
 - Extent of available supporting data.
 - Ability of in-process analytical and release methods to detect differences in product quality attributes.

Guidance Examples of PAS Reportable Changes (High Risk)

- Drug substance:
 - Change from a stainless steel to disposable (e.g., bag) bioreactor or vice versa.
 - New or revised recovery procedures
 - New or revised purification process
 - Change in the method(s) for virus or adventitious agent removal or inactivation.
- Drug product:
 - Addition, deletion, or substitution of unit operation(s) or change in their sequence.
 - Changes that may affect product sterility assurance, such as changes in product or component sterilization method(s), or an addition, deletion, or substitution of steps in an aseptic processing operation.
 - Change in a membrane material or dimensions of the final sterilization filter.

Changes to an Approved Application for Specified Biotechnology and Specified Synthetic Biological Products, 1997; Chemistry, Manufacturing, and Controls Changes to an Approved Application: Certain Biological Products, 2021

Guidance Examples of CBE-30 Reportable Changes (Moderate Risk)

- Drug substance:
 - Change in the filter or resin supplier with no change in the resin material, operating or performance parameters.
 - Addition or reduction in number of pieces of equipment (e.g., filtration devices, etc.) to achieve a change in purification scale not associated with a process change.
- Drug Product:
 - Replacement of equipment with that of similar, but not identical, design and operating principle that does not affect the process methodology, process operating parameters or aseptic processing.
 - Change to a final sterilization filter supplier with no change in material, dimensions, or sterilization method.
 - Changes to sterilization cycles for sterile product contact equipment.

Guidance Examples of Annual Reportable Changes (Minor Risk)

- Addition or replacement of equipment of the same size and material of construction used in harvesting and pooling with no change in the process parameters specified in the approved BLA.
- For sterile drug products, change to ranges of filtration process parameters that are within previously validated parameters.

Proactive Approaches to Manage Supply Constraints

- Use of comparability protocols per 314.70(e) or 601.12(e):
 - May allow for a less burdensome reporting category.
- Requests for expedited reviews
 - Certain conditions must be met.
- Implementation of ICH Q12
 - Identification of established conditions (EC) and use of a Postapproval Change Management Protocol (PACMP).
 - Allows for efficient and less burdomsome management of changes throughout a product lifecycle.
- Low risk non-reportable changes managed through PQS and QRM.
 - Changes to SUS not described in the eCTD.

Comparability Protocols (CP)

- A CP is a written plan for assessing the effect of a proposed CMC change(s) on product quality.
 - Submitted as part of the original application or a PAS
 - A CP when approved may justify a less burdensome reporting category.
 - Proactive approach to change management:
 - Provides early feedback from FDA.
 - Provide greater predictability for implementing CMC changes.
 - Allows for an earlier distribution of products with the CMC changes.
 - May allow for a more efficient management of supply chain.

Scope of a CP

- May cover one or more proposed changes.
- Should contain supporting information (any analysis and risk assessment activities), a plan for implementing the change(s) and the proposed reduced reporting category.
 - Used for a one-time change(s) or used repeatedly for a specified over the lifecycle of a product.
 - May cover identical change(s) that affects multiple applications (group supplements or trans-BLA submission).

Limitations of the CP Approach

- An approved CPs may not be able to support a lower reporting category for the change and ensure product quality and patient safety:
 - Insufficient understanding of impact on product or process
 - CGMP compliance status of the facility not acceptable
 - Where data from nonclinical safety, pharmacokinetic/pharmacodynamic, and safety and efficacy studies are needed to evaluate the effect of changes on product quality.

Requests for Expedited Review

- Applicants can request an expedited review of supplements.
- MAPP 5310.3 (R2) "Requests for Expedited Review" describes CDER's Office of Pharmaceutical Quality (OPQ) policies for granting or denying a request to conduct an expedited review for a new PAS.
- Expedited reviews will be conducted:
 - When a public health need arises with or without a request from an applicant.
 - Requests will be considered on a case-by-case basis
 - Review completion date will depend on the availability of OPQ's resources and the rational for the expedited review.

Considerations for Expedited Review

- Supplements may be granted an expedited review in the following situations:
 - Drug shortages to resolve a shortage.
 - Special review programs such as the President's emergency plan for AIDS relief.
 - Public health emergencies (PHE).
 - Certain government purchasing programs.
 - Statutory mandates or other legal requirements to comply with Federal or State mandates or other legal actions.
 - Extraordinary hardship on the applicant
 - Review for public health reasons or if a delay would impose and extraordinary hardship on the applicant (catastrophic or unforeseen events).

Role of ICH Q12

- ICH Q12 is a tool that can enable post-approval changes in a more predictable, efficient and prospective manner over the lifecycle of a product.
 - Clarifies which elements in an application assure product quality:
 - Defines established conditions (EC) are legally binding elements required to assure to assure product quality.
 - A change in an EC necessitates a submission to the FDA.
 - Describes the Post-approval Change Management Protocol (PACMP):
 - A proactive regulatory tool similar to the CP
 - Allows for the planning and implementation of future changes to EC.
 - Approved in advance of the protocol execution and allows for a lower reporting category and or shortened review period.
 - Submitted as part of the original submission or a PAS
 - Two step process is described in ICH Q12.

Postapproval Change Management Protocol (PACMP)

FDA

- Step 1: A PACMP is submitted as a written protocol in the eCDT Module 3.2.R.
- The protocol should consist of:
 - A description of proposed change(s) and rationale(s)
 - A risk assessment and based on identified risks to product quality, a list of specific tests and studies to be performed to evaluate the impact of the proposed change(s).
 - Any changes to the approved control strategy.
 - Confirmation that certain process qualification step will be completed before implementation.
 - Any additional supportive information from previous experience with the same or similar products.
 - The proposed reporting category for the change(s) for step 2

Postapproval Change Management Protocol (PACMP) (Cont.)

- Step 2: Involves PACMP execution:
 - Results from the executed protocol studies are submitted for review to the regulators (e.g., FDA).
 - Based on the reporting category the approval for change implementation may or may not be required.
 - If the acceptance criteria and or other conditions are not met the change cannot be implemented.
 - In this situation, existing regulation and guidance and the associated reporting category must be followed.

FDA Feedback on SUS Supply Constraints

- FDA has and will continue to provide feedback to sponsors/applicants:
 - Feedback is intended to prevent shortages/disruptions of medically necessary drugs.
 - Applicants should be ready to provide all relevant information to obtain relevant FDA feedback:
 - A list of affected product(s) and processes(s);
 - A description of the proposed changes to mitigate effects of the component shortage on product quality and supply;
 - Involvement of other products and /or manufacturing facilities (including CMOs) and
 - Any information related to potential or actual drug shortage concerns.

FDA Feedback

- Feedback should be obtained prior to submitting a change in a lower reporting category supplement than is required by regulation or recommended through guidance.
- Applicants should contact the FDA in the event of supply chain interruptions:
 - Use of atypical or flexible submission strategies may be warranted.

FDA Contact Information

- For impending or existing shortages contact:
 - for products regulated by CDER: DRUGSHORTAGES@FDA.HHS.GOV);
 - for products regulated by CBER: cbershortage@fda.hhs.gov
- For additional questions for
 - CDER products: <u>CDER-OPQ-Inquiries@fda.hhs.gov;</u>
 - CBER products: applicants should contact the appropriate CBER review office.

Case study 1: Change in Drug Product Sterilizing Filter Suppliers

- FDA
- An applicant proposed to use alternate suppliers of sterilizing grade filters and proposed to submit a PAS.
- The PAS would include the following information and data:
 - A description of the alternate filter, including differences ad similarities with the approved filter.
 - Small scale data from characterization studies designed to support process or product quality.
 - Including product specific microbial retention studies and supporting media fills.
 - An update of the eCTD to include the use of alternate filters.
- The applicant committed to submit at scale production data from one run in an AR once the change was implemented.
- FDA agreed with the submission approach and the supporting scale-down data in the PAS.

Case study 2:

Use of an Alternate Viral Filtration Filter

- An applicant proposed to submit a PAS to support the use an alternate viral clearance filter.
- FDA provided the following feedback:
 - Agreement with a PAS submission to support the use of an alternate viral clearance filter.
 - Commented that performance of virus clearance studies could be applicable to multiple products depending on the similarity of the virus filtration parameters for different products.
 - Recommended that execution of virus filter validation studies be conducted under worst-case conditions for each product or each generic /modular study.
 - Recommended that virus clearance levels be recalculated and provided in the PAS.
- The applicant committed to provide at-scale data in an AR once the change was implemented.

Case Study 3: Use of Alternate Filters

- An applicant proposed to communicate the use an alternate bioburden reduction filters (e.g., drug substance intermediate and final drug substance filters) in an annual report (AR).
- Approved supplier of filters was listed in the eCDT.
- FDA agreed with the filing categorization and recommended the following:
 - Filters from different suppliers be shown to be interchangeable based on scale-down studies (performance, compatibility studies).
 - Established bioburden limits prior to any bioburden filtration step remain unchanged.
 - The eCDT be updated to include the use of alternate filters.

Conclusions

- Several regulatory approaches are available to manage post-approval changes needed to address current and future SUS supply chain constraints:
- For reportable changes -
 - Use of existing FDA regulations and guidance to determine submission reporting categories.
 - Use of comparability protocols to efficiently manage necessary changes
 - May allow for downgrading reporting categories.
 - Use of expedited review requests under certain conditions.
 - To resolve an impeding drug shortage.
 - Implementation of ICH Q12 and proactive use of PACMP to manage change over the lifecycle of a product.
 - Less burdensome approach.
 - Use PQS and QRM in managing changes.

Conclusions (cont.)

- For non reportable changes:
 - Lowest risk changes to product quality not described in an application are generally not reportable
 - Should be managed within a firm's PQS and QRM
 - May be verified during a routine inspection.

