

Protein Nanoparticle Vaccines – A Platform Enabling Rapid Translation from Design to Clinic

WCPB 2022

Lauren Carter

UNIVERSITY of WASHINGTON

IPD and RoseTTAFold – New Frontiers in Computational Protein Design

The driving force for protein folding is the burial of hydrophobic residues in the protein's core, secluded from the solvent. Absolute energy minima corresponds to compactly folded structure.

Nanoparticle Scaffolds are Designed to Specifically and Cooperatively Assemble into Well Defined, Highly Stable Particles

King NP, et al. (2012) *Science* **336**:1171-4. King NP, et al. (2014) *Nature* **510**:103-8. Hsia Y et al. (2016) *Nature* **535**: 136-9. Bale J, et al. (2016) *Science* 353: 389-94. Ueda G & Antanasijevic A, et al. (2020) eLife 9:e57659.

Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. <u>Adam J. Wargacki, Neil P. King</u>. <u>Nature Communications</u>

2

Designed two-component nanoparticles are a robust and versatile platform for multivalent antigen display

Mosaic Antigen Display SK BioSciences Icosavax

Mosaic Antigen Display VRC-VPP (NIH)

> Marcandalli J, et al. (2019) *Cell* **176**: 1420-31. Brouwer PJM, et al. (2019) *Nat. Comm.* **10**:4272. Martin J, et al. (2020) *npj Vaccines* **5**:72. Antanasijevic A, et al. (2020) *PLOS Path.* 16:e1008665. Ueda G & Antanasijevic A, et al. (2020) *eLife* **9**:e57659. Walls AC & Fiala B et al. (2020) *Cell* **183**: 1367-82. Boyoglu-Barnum S & Ellis D, et al. (2021) *Nature* **592**: 623-628.

cGMP Manufacture of Example Mosaic Nanoparticle Vaccine – Many Drug Substances, One Drug Product

Antigen Bearing Component

- Upstream Transient or CHO
- Downstream –VI/ Standard Chromatography /VF/UFDF

Assembly Component

- Upstream E. coli
- Downstream Standard Chromatography/UFDF

Nanoparticle Assembly

- In Vitro mixture of components at specific molar ratio
- UF/DF

Example of Mammalian-expressed Antigen-Bearing DS Specifications

Release			Characterization		
Attribute	Assay	Target Value	Attribute	Assav	Target
General	Appearance, USP<1>	Clear, colorless, no turbidity 6.8-7.2		Host Cell	Values Report result
Concentration	A280	10-12		aPCR (HEK)	
Purity	Gel Electrophoresis (GXII) - Reduced	Report result	Residuals	Host Cell Protein by	Report result
Aggregation/Purity	Size Exclusion Chromatography (SEC)	Report result		ELISA (HEK) Valproic Acid	Report result
Identity	ELISA - Ag 1	TBD	Molecular Weight	SEC-MALS	Report result
	ELISA - Ag 2	TBD	Sequence	Peptide	Report result
	ELISA - Ag 3	TBD		Mapping	
	ELISA - Ag 3	TBD			
Potency	ELISA ²	TBD			
Particle Size	Dynamic Light Scattering	Report result			
Safety	Endotoxin, USP<85>	≤ 10 EU/µg			
	Bioburden, USP<61>	< 1 CFU/10mL			

Example of Microbial-expressed Assembly DS Specifications

Release	Characterization				
Attribute	Assay	Target Value	Attribute	Assav	Target
General	Appearanc	Clear, colorless, no turbidity	Attribute	ASSUY	Values
	e, USP <1>	0.0.7.0		Host Cell DNA by	Report
	рн, USP<791>	6.8-7.2	Residuals	Host Cell Protein by	Report
Concentration	A280	10-12		ELISA (E. coli)	result
Aggregation/Purity	SEC	Report result	Molecular	SEC-MALS	Report
Identity	RPLC	Conforms to Reference	Weight		result
Particla Siza	Dynamic Light	Report result	Sequence	Peptide Mapping	Report result
	Scattering				
Safety	Endotoxin, USP<85>	≤ 5.8 EU/µg			
	Bioburden, USP<61>	< 1 CFU/10mL			

Example of Mosaic Nanoparticle DS Specifications

Attribute	Assay	Target Value			
General	Appearance, USP<1>	Clear, colorless, no turbidity			
	pH, USP<791>	6.8-7.2			
Concentration	A280	2-4			
Purity	SEC	>99%			
Relative Potency	ELISA (evaluating binding partners)	50-150% of reference			
Identity	RPLC (unique chromatography separation with 4 peak profile)	Conforms to Reference			
	SEC (size to conform to cage formation)	Conforms to Reference			
Particle Size	Dynamic Light Scattering	Conforms to reference			
Sofoty	Endotoxin, USP<85>	<5 EU/ug			
Salety	Bioburden, USP<61>	< 1 CFU/10mL			
¹ TBD – To be determined					

Speed to Patient – Advantages of Protein Nanoparticles

- USP and standard platform analytical methods are applicable
- Upstream and Downstream Processes are exceptionally standard
 - Expression, Viral Inactivation, Chromatography, UF/DF
- Mosaic Nanoparticles tend to be highly potent
 - low dose required \rightarrow smaller batch size \rightarrow manufacturing flexibility
- Well characterized scaffold of Nanoparticle Components allows for rapid iteration of antigens

Speed to Patient – Rapid Timeline for IPD/SK SARS-CoV2 NP Vaccine

- Feb 2020 Wuhan1 constructs ordered
- May -Lead Candidate Selection
- June NHP studies \rightarrow Dose and Adjuvant
- July Transfer of WCB to SK
- Aug –Nov PD
- December 2020 cGMP manufacture
- January 2021 Phase 1/2 trials initiated
- June IND filing (South Korea MFDS)
- July 2021 Phase 3 enrollment

- Mosaic Nanoparticle Antigen Content assays are dependent on the antigens
 - Highly similar antigens (SARS-CoV2 VOCs) could be difficult to separate using RP/HIC/IEX methods
- Stability of the Nanoparticle Antigen-Bearing Components, DS, and DP is also dependent on the antigens
- Mosaic Nanoparticles require multiple Drug Substances increases complexity and risk

GBP510 SARS-CoV-2 vaccine

- Phase 3 (SK bioscience) and Phase 1 (Icosava)
- \$173M in follow-on funding from CEPI
- Planned distribution through COVAX

FluMos-v1Supraseasonal flu vaccine- Phase 1 (NIAID)

IVX-121 RSV vaccine

– Phase 1 (Icosavax)

Pipeline Flu – HA mosaic Pan-coronavirus mosaic Pan-sarbecovirus mosaic Malaria – AIV/TBV ECF PPRV RSV hMPV

Acknowledgements and Thanks

- David Baker •
- Lance Stewart •
- Neil King •
- **IPD** Cores •
- Dan Ellis •
- **David Veesler** •

Allergy and Infectious Diseases Dale and Betty Bumpers Vaccine Research Center

BILL& MELINDA GATES foundation

Extra slides

Two Display Pathways to Immunity - Mosaic vs

López-Sagaseta J et al. (2016) Comp. Struct. Biotech. J. 14:58-68. Gause KT et al. (2017) ACS Nano 11:54-68.

Two-component platform allows for modular display of seasonal HA trimers, either as a cocktail of separate particles or as a co-assembled mosaic

