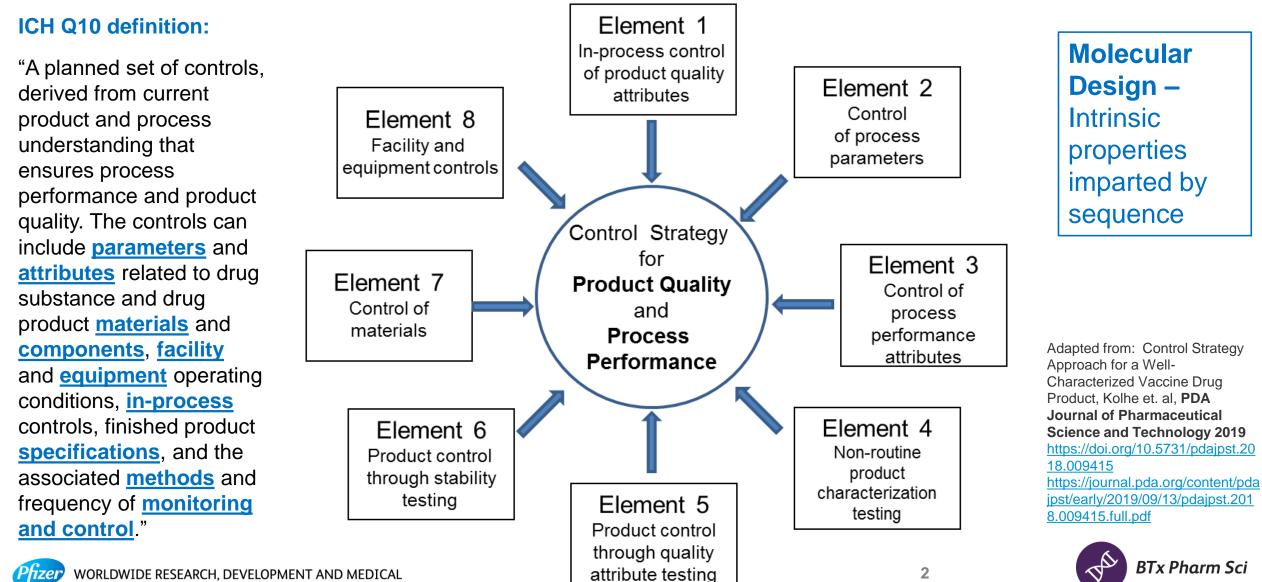
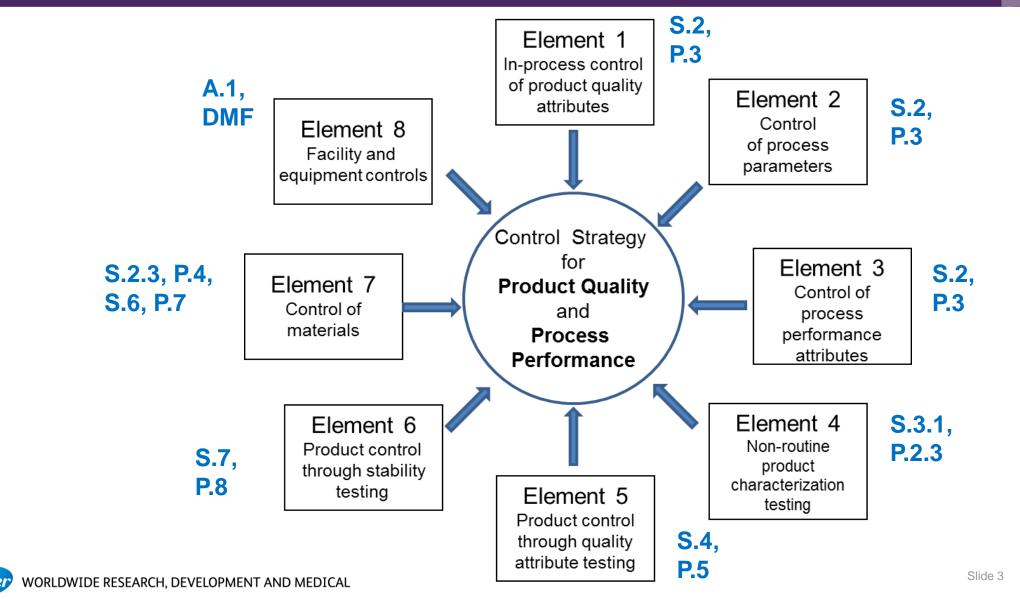
Holistic Control Strategy – from molecular design to combination product

Telling a connected story in a BLA


Chandra Webb, WCBP January 2020

BioTherapeutics Pharmaceutical Sciences

worldwide research, development and medical


Pfizer's Control Strategy Framework – Elements of Control

WORLDWIDE RESEARCH, DEVELOPMENT AND MEDICAL

2

Map to Module 3

BTx Pharm Sci

Example 1: Oxidation related variants

Table 1: Active Pharmaceutical Ingredient CQA Identification, Risk and Lifecycle Knowledge


 Management

CQA (type)	Quality attribute	Risk ³	Origin	Control Strategy
Identity	Identity	Efficacy, Safety	Intrinsic to the Molecule	(b) (4)
Bioactivity/ Potency	Potency by Binding ⁴	Bioactivity, Efficacy, Safetv	Intrinsic to the Molecule	
Charge-Related Variants: Basic Variants	(b) (4)	Reduced bioactivity.	Manufacturing process, storage	
Oxidation-Related Variants	?Met or Trp in CDR?	Reduced bioactivity.		
	?Met in Fc?	Potential impact to PK.	Manufacturing process	

Control strategy for oxidation related variants

- molecular design (susceptible residues in sequence)
 - understanding of impact to target binding if in CDR, is it relevant to mechanism of action?
 - Impact to pharmacokinetics? (safety / immunogenicity, patient "harm")
 - $^{\circ}~$ Can susceptible sites be engineered out in the first place?
- Process control of cell culture conditions (temp, time, redox maybe)
- Process controls in purification?
 - (unlikely to be separable, but maybe stainless steel exposure matters)
- is there an analytical method to apply to DS release?
 - Control as "material attribute" at DS level as input to DP process
- can we formulate (anti-oxidant) to mitigate?
- controls around vapor H₂O₂ for isolator decontamination?
- Ozone E-beam or high voltage leak detection generated?
- control of light exposure through manufacturing steps, pen assembly, final packaging
- labeling statements about light exposure for end-user worldwide research, development and medical

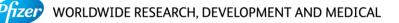
Control strategy for oxidation related variants

- molecular design (sequence) probably mostly in 3.2.S.3.1
 - understanding of impact to target binding if in CDR, is it relevant to mechanism of action?
 - Impact to pharmacokinetics? (safety / immunogenicity, patient "harm")
 - Can it be engineered out in the first place?
- Process control of cell culture conditions (temp, time, redox maybe) 3.2.S.2.6, maybe 3.2.S.2.5
- Process controls in purification? 3.2.S.2.6, maybe 3.2.S.2.5
 - (unlikely to be separable, but maybe stainless steel exposure matters)
- is there an analytical method to apply to DS release? 3.2.S.4
 - Control as "material attribute" at DS level as input to DP process
- can we formulate (anti-oxidant) to mitigate? 3.2.P.2.2
- controls around vapor H₂O₂ for isolator decontamination? (maybe not discussed)
- Ozone E-beam or high voltage leak detection generated? 3.2.P.2.3
- control of light exposure through manufacturing steps, pen assembly, final packaging 3.2.P.2.3

• labeling statements about light exposure for end-user – multiple possibilities worldwide research, development and medical

BTx Pharm Sci

Eg. Light exposure / impact on oxidation


- S.3.1 forced degradation light exposure
- S.6 photostability of DS
- P.2.2, P.2.3 photoexposure studies in formulation development, manufacturing process development, automated visual inspection
- P.2.4 photoexposure in packaging development
- P.2.6, P.8 light exposure during dose administration (compatibility) testing (end user)
- P.3.5 manufacturing process validation with hold times, visual inspection parameters
- P.5 routine test methods
- P.7 container closure, eg. amber vials
- P.8 photostability of DP +/- packaging

- Which residues oxidize when exposed to light?
 - What "kind" of light?
 - Are we using concurrent accelerated temperatures?
- Is there an impact to potency, pharmacokinetics, or safety/immunogenicity?
- Do we have analytical tools to monitor oxidation? (of protein, never mind excipients)
 - Routine release or stability limits needed?
- What light exposure can we routinely expect in "real life"?
 - Manufacturing process
 - Storage
 - End-user

How do we connect all these together, to show process / product understanding, to present an assessment of risk that is relevant to the "real world", and to defend a proposed control strategy as appropriate?

Example 1: Oxidation related variants

Table 1: Active Pharmaceutical Ingredient CQA Identification, Risk and Lifecycle Knowledge

 Management

CQA (type)	Quality attribute	Risk ³	Origin	Control Strategy
Identity	Identity	Efficacy, Safety	Intrinsic to the Molecule	(b) (4
Bioactivity/ Potency	Potency by Binding ⁴	Bioactivity, Efficacy, Safetv	Intrinsic to the Molecule	
Charge-Related Variants: Basic Variants	(b) (4	Reduced bioactivity.	Manufacturing process, storage	
Oxidation-Related Variants		Reduced bioactivity. Potential impact to PK.	Manufacturing process	?

What is the best way to succinctly communicate all this in one cell of a table?

Should we make this a map that simply points at the relevant sections, or is a text based summary better?

Slide 8

Example 2: combination product QAs

Table 3: Drug Product CQA Identification, Risk, and Lifecycle Management

<u>CQA (type)</u>	<u>Risk</u>	<u>Origin</u>	<u>Control</u> <u>Strategy</u>
Extractable volume DP	Accurate dosing	Fill volume was identified as CPP that is controlled within pre- established limits to ensure accurate dosing. (b) (4)	(6) (4)
Break-out force, gliding force	Accurate dosing		

Pre-filled syringe only, have one P section.

If autoinjector, often have an additional P section specific to AI.

Complicates where / how to describe combination product aspects holistically.

→ Structure of dossier impacts story telling.

Skyrizi chemistry review, www.fda.gov

Slide 9

BTx Pharm Sci

Control Strategy for Glide (Extrusion) Force

- Understanding requirements how much force is too much?
 - User population
 - Autoinjector design spring force / electromechanically driven
- Viscosity
 - Molecular design intrinsic property of molecule
 - Concentration of protein/API
 - Formulation excipients
- Syringe (cartridge) control of components
 - Needle inner diameter
 - Plunger / barrel lubrication
 - (back pressure relevant to in vivo injection)

- Test methods
 - speed relevant to time (duration of injection)
 - Variability, reporting of results
- Design Verification
 - Reliability
 - Confidence in assessment
- Stability
- Process Validation
- Routine Controls

Control Strategy for Glide (Extrusion) Force

- User population P.2.4
- Autoinjector design spring force / 0 electromechanically driven - P.2.4
- Viscosity
 - Molecular design intrinsic property of molecule ??
 - Concentration of protein/API P.2.2 0
 - Formulation excipients P.2.2
- Syringe (cartridge) control of components
 - Needle inner diameter P.2.4, P.7
 - Plunger / barrel lubrication maybe P.2.4
 - (back pressure relevant to in vivo injection) ??

- Test methods
 - speed relevant to time (duration of 0 injection) - P.2.4, P.5
 - Variability, reporting of results P.2.4, P.5
- Design Verification
 - Reliability P.2.4
 - Confidence in assessment -P.2.40
- Stability P.2.4, P.8
- Process Validation P.3.5
- Routine Controls P.3, P.5

EU draft guideline: https://www.ema.europa.eu/en/guality-reguirements-drug-VIDE RESEARCH. DEVELOPMENT AND MEDICAL device-combinations

Example 2: combination product QAs

Table 3: Drug Product CQA Identification, Risk, and Lifecycle Management

<u>CQA (type)</u>	<u>Risk</u>	<u>Origin</u>	<u>Control</u> <u>Strategy</u>
Extractable volume DP	Accurate dosing	Fill volume was identified as CPP that is controlled within pre- established limits to ensure accurate dosing. (b) (4)	(B) (A)-
Break-out force, gliding force	Accurate dosing		?

What is the best way to succinctly communicate all this in one cell of a table?

Should we make this a map that simply points at the relevant sections, or is a text based summary better?

WORLDWIDE RESEARCH, DEVELOPMENT AND MEDICAL

Skyrizi chemistry review, www.fda.gov

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761105Orig1s000ChemR.pdf

In Conclusion

- Control Strategies for specific Quality Attributes often encompass several different elements.
- The narrative of the control strategy is largely spread out across many sections in Module 3.
- Is a comprehensive QOS the "right" place to bring the holistic story together? How can we summarize succinctly into a table without losing the connectivity of the holistic narrative?
 - $^{\circ}$ (for discussion! $^{\odot}$)

Thank you!! (Acknowledgments)

- People at Pfizer
 - Leslie Bloom, Dave Cirelli, Marta Czupryn, Bev Ingram, Amanda Matthews, Sumit Luthra, Joann Parker, Russ Shpritzer, Ann Subashi, ... (lots more)
 - Nick Warne, Vinay Radhakrishnan
- The Organizers
- The Audience for listening and for open discussion.