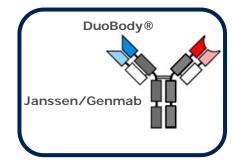
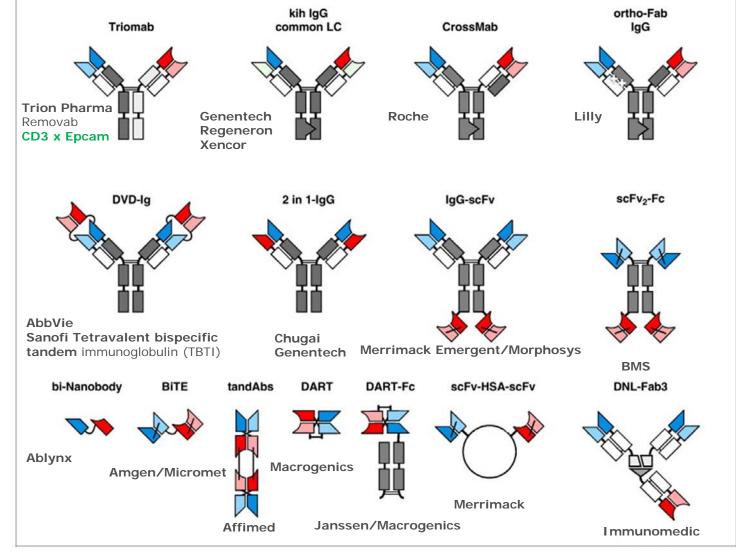
Robust Bispecific Process Development and Commercial Manufacturing Platform

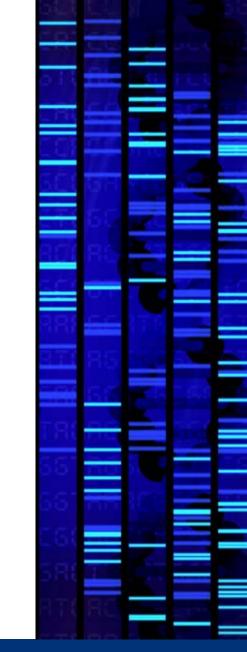
Development and Characterization challenges leading to insights for increased understanding and control of Bispecific Production


WCBP, CASSS Washington DC January 28^{th,} 2020


Pedro Alfonso, Ph.D. Janssen R&D

Confidential Draft : not for distribution

Bispecific Agents in Clinical Trials

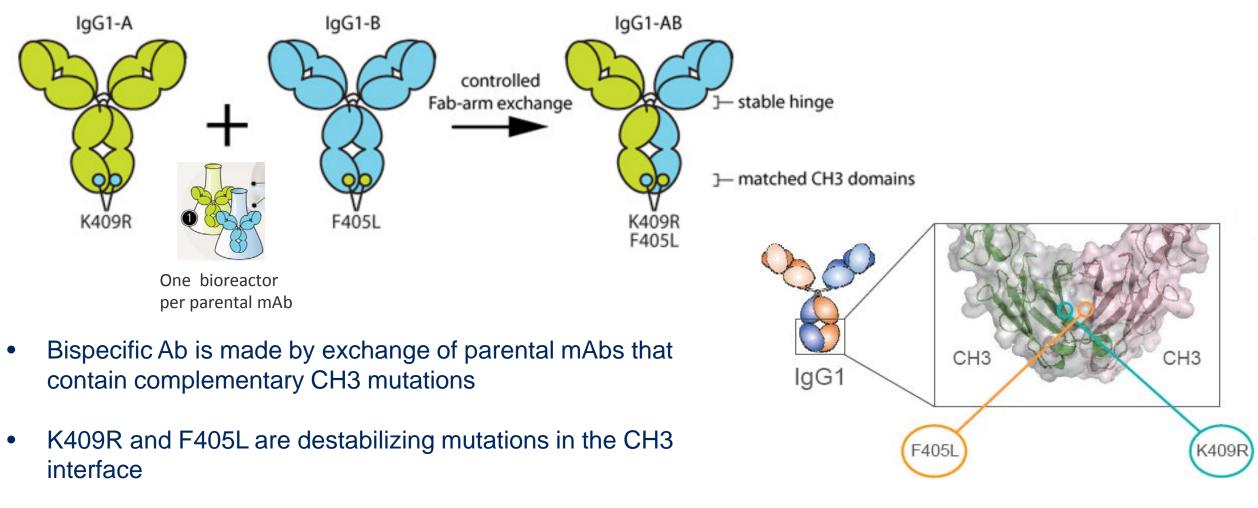


BioTherapeutics Development Kontermann and Brinkmann, Bispecific antibodies, Drug Discovery Today, 2015 <u>https://www.sciencedirect.com/science/article/pii/S135964461500077X?via%3Dihub</u>

pharmaceutical companies of Johnson Johnson

Outline

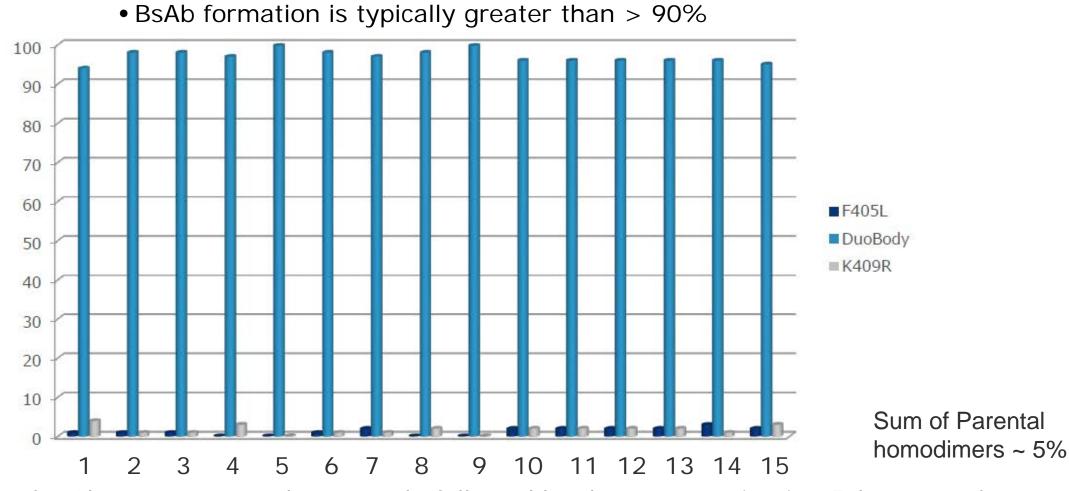
- DuoBody[®] platform and cFAE overview
- Kinetic Studies and ΔG
- Mechanism & Manufacturing Insight
- Characterization and Structure Function
- cFAE Model development



BioTherapeutics Development Confidential Draft : not for distribution

Overview Duobody® BsAb Technology

PHARMACEUTICAL COMPANIES OF

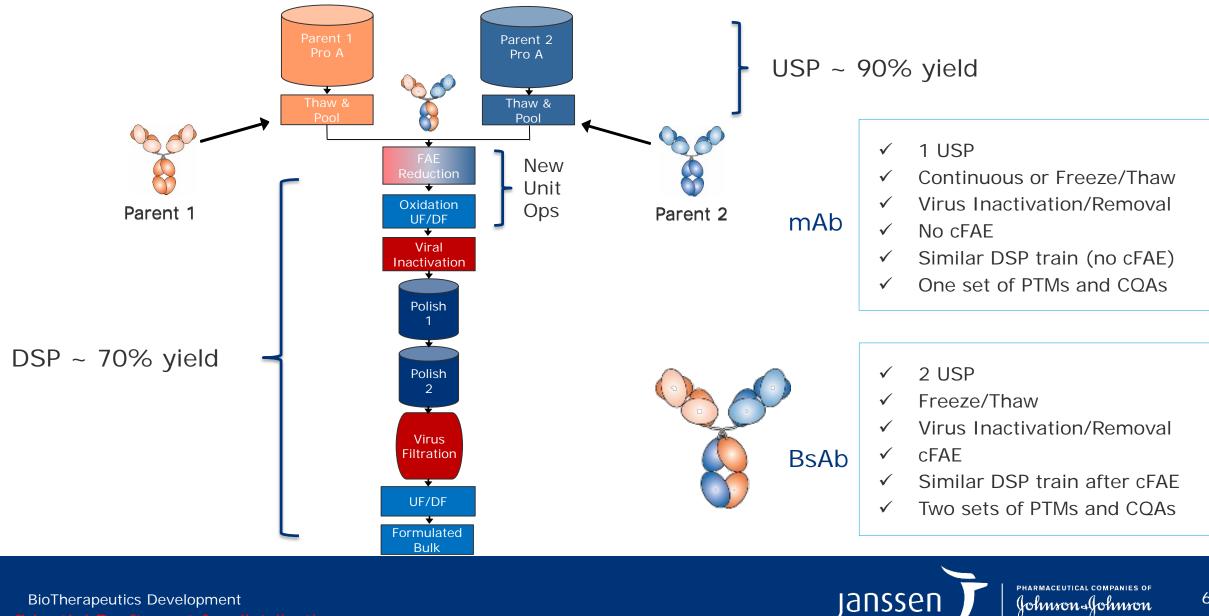

Johnson Johnson

Janssen

The complementary mutations favor heterodimerization

BioTherapeutics Development Confidential Draft : not for distribution Labrijn et al, PNAS 2013;110(13):5145-5150. Gramer et al. mAbs 2013;5(6): 962–973. Labrijn et al. Nature Protocols 2014;9(10):2450-63.

DuoBody[®] formation through cFAE is a robust process



• Parental mAbs are generated separately followed by downstream *in vitro* Fab arm exchange

BioTherapeutics Development Courtesy of Mark Chiu fidential Draft : not for distribution

Bispecific Process leverages Janssen mAb platform

BioTherapeutics Development

6

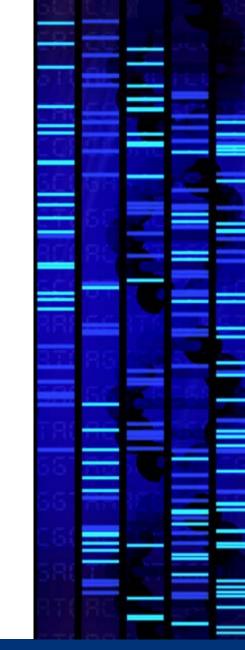
Johnson Johnson

BsAb Impurity Clearance is similar to mAb platform

BsAb

		ı	· · · · · · · · · · · · · · · · · · ·				
BsAb	mAb 1 %	mAb 2 %	Reducing Agent µM	HCP ng/mg	DNA pg/mg	Total Virus log Clearance	
А	< 2.0	<1.0	<2	1	< 2	15.4	
В	<1.0	<1.0	<1.5	1	< 2	> 18.3	
С	<1.5	<1.5	<2	3	<2	16.7	
D	<1.0	<1.8	<2	4	< 2	16.3	
E	<1.5	<1.5	<1.5	40	< 2	>15.3	
F	<1.8	<2.5	<2	<10	< 2	17.8	
G	<1.5	<1.5	<1.5	1	< 2	>21.4	

BioTherapeutics Development Confidential Draft : not for distribution

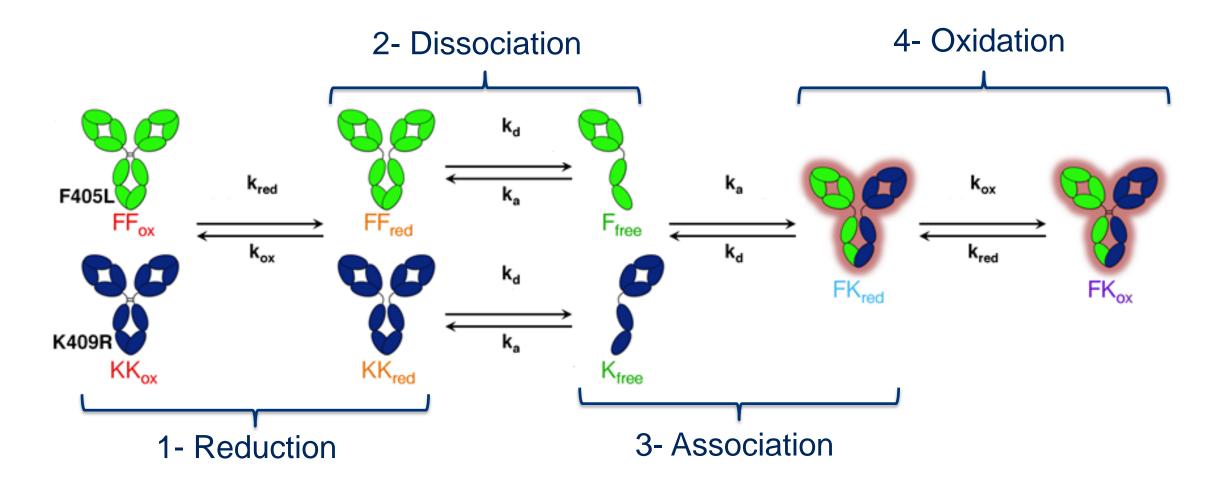


mAb

Janssen

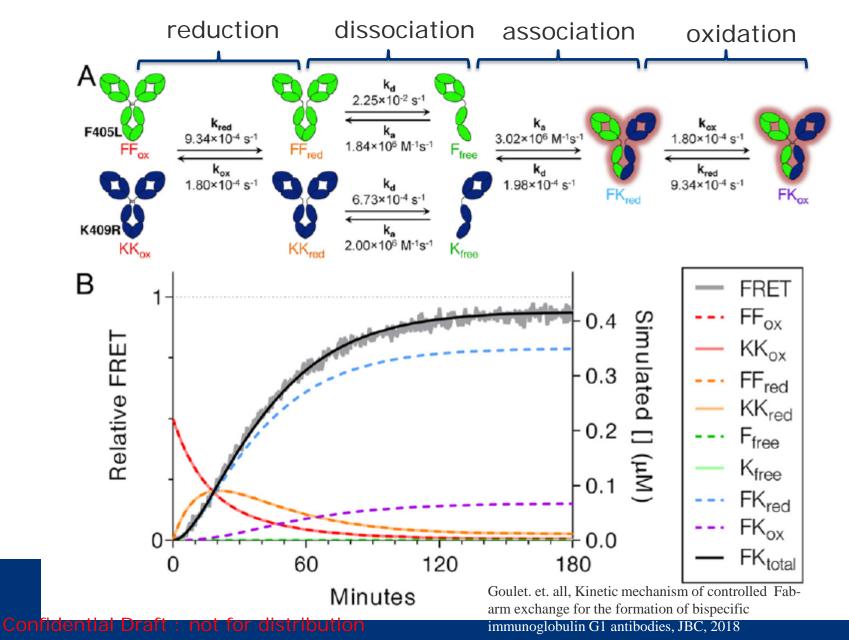
Outline

- DuoBody[®] platform and cFAE overview
- Kinetic Studies and ΔG
- Mechanism & Manufacturing Insight
- Characterization and Structure Function
- cFAE Model development



BioTherapeutics Development Confidential Draft : not for distribution

Kinetic mechanism of cFAE: 4 different steps


Goulet. et. all, Kinetic mechanism of controlled Fab-arm exchange for the formation of bispecific immunoglobulin G1 antibodies, JBC, 2018

Janssen

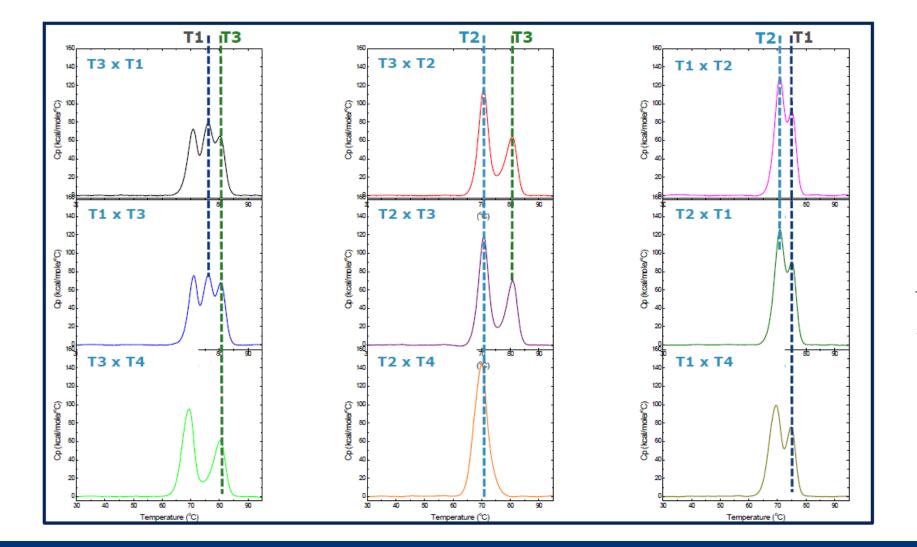
Complete kinetic description of cFAE

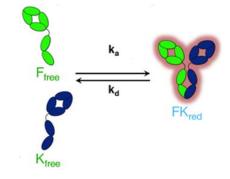
Fluorescence resonance energy **transfer** (**FRET**)*

Association of parental mAbs has a negative ΔG value

$$\Delta G = - RT \ln \frac{K_{AA}K_{BB}}{K_{AB}^2}$$

 $\Delta G = - 27.7 \text{ kJ/mol}$


H bond equivalent ~5-13 KJ/mol


Janssen

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

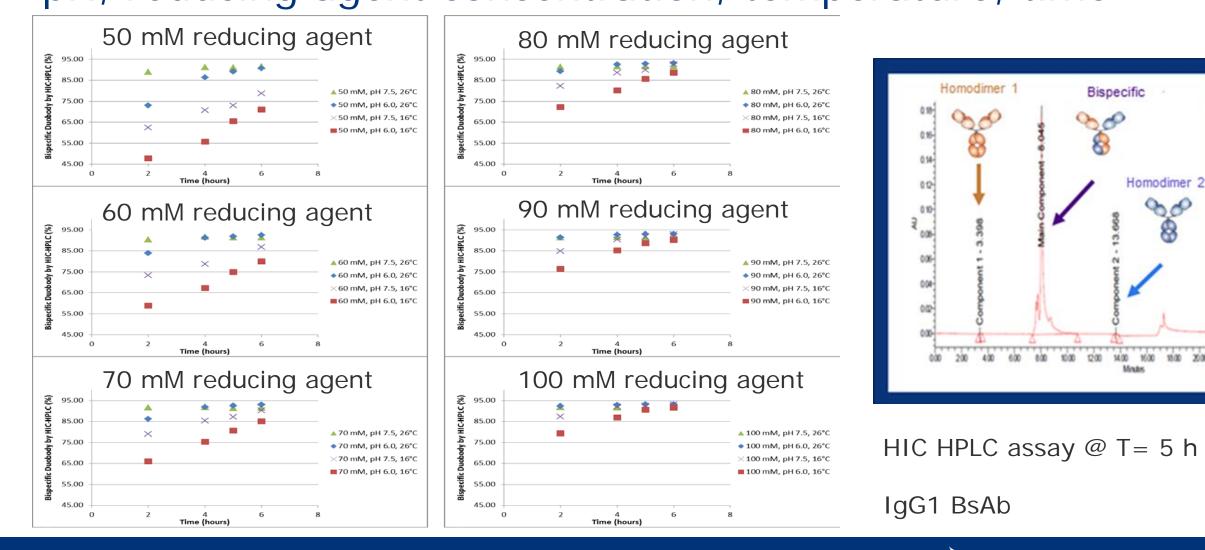
Tm and Enthalpies of Fabs Arms in BsAbs are conserved

Fab domains maintain their unique folding upon BsAb formation

A unique structure is maintained irrespective of bispecific Ab

Mass spec data, peptide mapping, free thiol, bioactivity and other data confirm correct assembly BsAb

PHARMACEUTICAL COMPANIES OF


Johnson & Johnson

11

BioTherapeutics Development Confidential Draft : not for distribution Mark Chiu

Parameters controlling cFAE: pH, reducing agent concentration, temperature, time

PHARMACEUTICAL COMPANIES OF

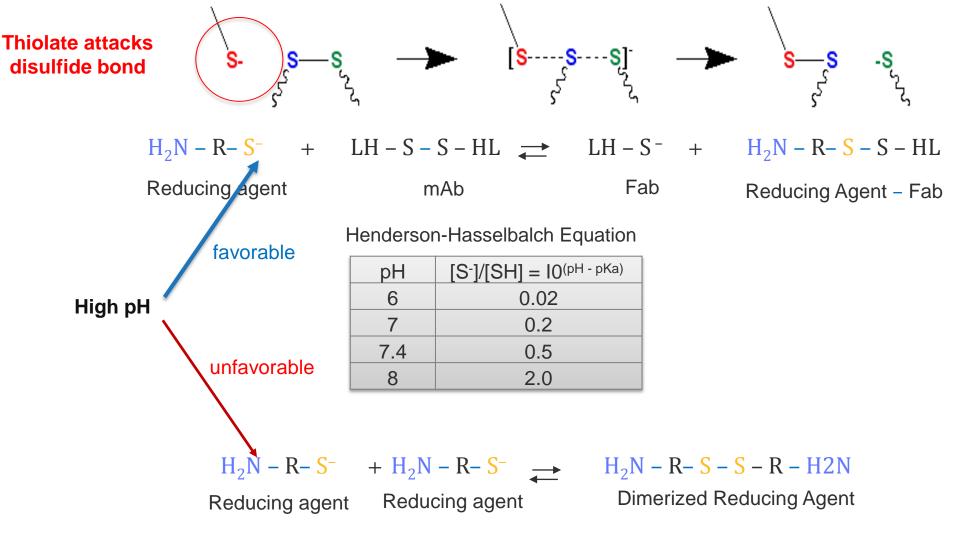
Johnson Johnson

12

jansser

BioTherapeutics Development Scot

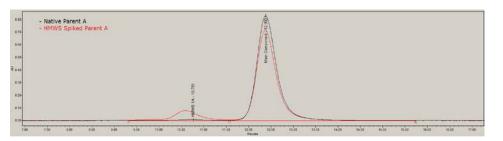
Scott Jarvis

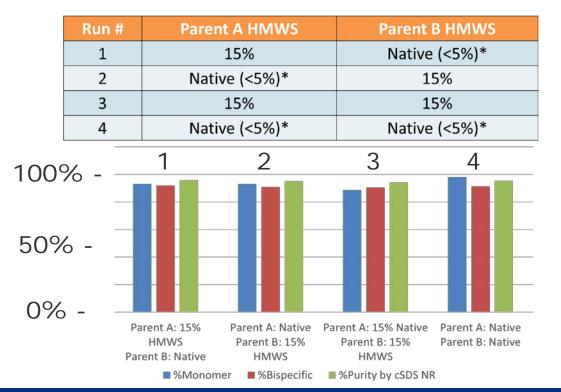

Reduction step: pH is key in hinge reduction chemistry

PHARMACEUTICAL COMPANIES OF

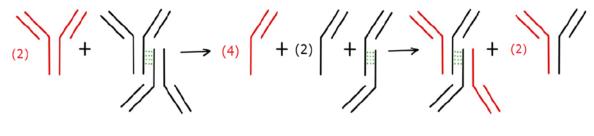
Johnson & Johnson

13


Janssen



Creighton, T.E., Disulfide bond formation in proteins, in Methods in Enzymology. 1984, Academic Press. p. 305-329.


BioTherapeutics Development Confidential Draft : not for distribution

cFAE is a robust process – Minimal impact of HMWS (Dimer) on BsAb formation

Sample	Expected Dimer (Da)	Measured Dimer (Da) DOE Run 3		
Parent A	290,936	ND		
Parent B	294,112	ND		
Bispecific	292,524	292,555		

Parent A Monomer Parent B HMWS

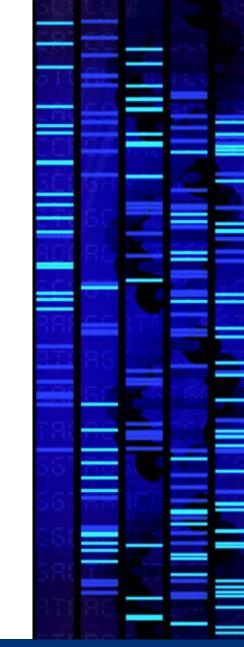
BSAb HMWS BSAb Monomer

Minimal impact of HMWS (Dimer) on BsAb formation

- Parental HMWS entering the cFAE reaction were not observed in the product of the cFAE
- Parental mAbs containing HMWS entering the cFAE reaction resulted in the formation of both bispecific monomer and bispecific dimer, suggesting parental dimer can reduce and later recombine as bispecific dimer without dissociating into monomer

lansser

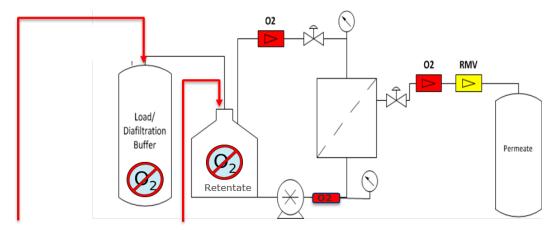
The cFAE is a robust process that has minimal impact from the presence of HMWS on the formation of intact formation of bispecific


BioTherapeutics Development Confidential Draft : not for distribution

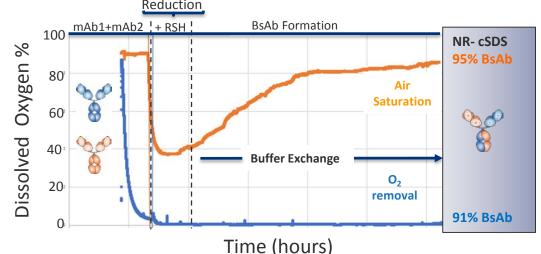
Rao and Capaldi

Outline

- DuoBody[®] platform and cFAE overview
- Kinetic Studies and ∆G
- Mechanism & Manufacturing Insight
- Characterization and Structure Function
- cFAE Model development



BioTherapeutics Development Confidential Draft : not for distribution



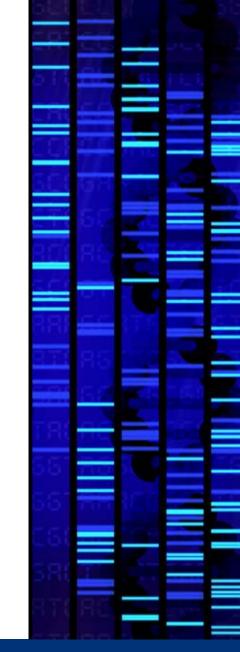
Insights in cFAE mechanism to enable control: Oxygen is not limiting at manufacturing scale

Air saturation or depleted oxygen during cFAE yields > 90% NR-cSDS BsAb

Oxygen is not limiting at scale = More options

- Multiple pathways to achieve disulfide formation of a DuoBody[®] BsAb
- Oxygen and free metals are not critical for DuoBody[®] bispecific Ab formation
- Robust manufacturing with wider bispecific design space.
- Wider design space increases the ability to fit different manufacturing plant configurations providing flexibility to the Janssen Supply Chain (JSC) enhancing our ability to deliver new drugs to patients

Confidential Draft : not for distribution


Bezila, Sobkow, Rao, Cohen Cressman, Li, Capaldi

٠

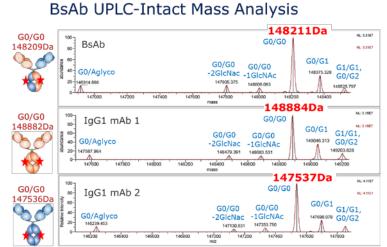
Outline

- DuoBody[®] platform and cFAE overview
- Kinetic Studies and ∆G
- cFAE Rxn Mechanism & Manufacturing Insight
- Characterization and Structure Function
- cFAE Model development

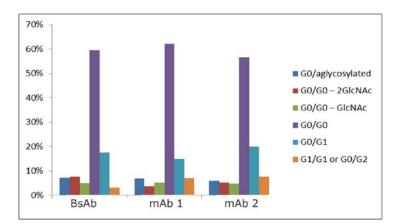
BioTherapeutics Development Confidential Draft : not for distribution

Key Challenges for DuoBody[®] Characterization

Bispecfics have similar properties as parental antibodies.

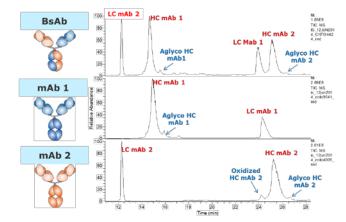

- Confirm DuoBody identity and purity
 >High resolution MS analysis
- Confirm DuoBody structural integrity
 NR peptide map for disulfide linkage analysis
 Fab and Fc integrity analysis
 Free thiol analysis
 - Thermal stability analysis

BioTherapeutics Development Confidential Draft : not for distribution



\∜Y' UNIVERSITY of WASHINGTON

BsAb Identity and Purity by UPLC - High Resolution MS


Relative Quantitation of Glycoforms by Intact Mass Analysis

Comparable glycoform profiles were observed among DuoBody and parentals

Jingjie Mo

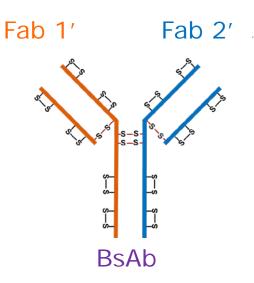
UPLC-Reduced MS Analysis Verifies Chain Composition

UPLC-Intact Mass Analysis Quantifies Residual Parentals and Other Impurities

BsAb Process Intermediates	LC mAb 2 (23252 Da)	Intact BsAb (148209 Da)	Intact BsAb- LC mAb1 (124971 Da)	Intact mAb 2 (148882 Da)	Intact mAb 1 (147537 Da)	LC mAb 1 (23238 Da)
FB	0.2%	99.5%	ND	ND	ND	0.3%
1xDPBS	0.2%	95.0%	ND	2.6%	1.9%	0.3%
FAE VIN	0.3%	90.8%	ND	4.9%	3.4%	0.5%
FAE	0.4%	92.0%	ND	4.1%	2.8%	0.7%
UF/DF1 DV_6	0.6%	90.8%	ND	4.6%	3.2%	0.8%
UF/DF1 DV_8	0.7%	87.4%	3.1%	4.6%	3.1%	0.9%

Quickly identifies all impurities in one assay

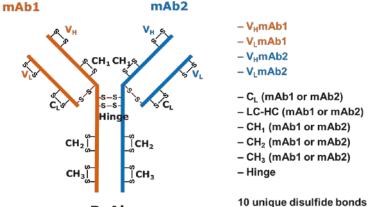
Quantifies relative abundance of all impurities by UV & MS

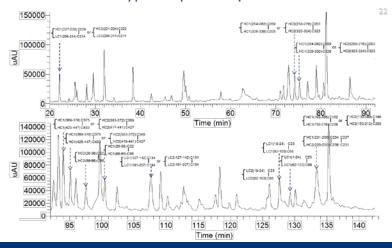


pharmaceutical companies of Johnson Johnson

BioTherapeutics Development Confidential Draft : not for distributic

Structural Integrity Characterization

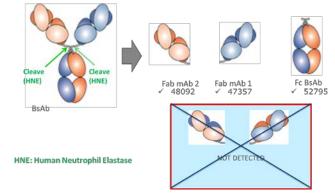

- Non-reduced Peptide Map confirm disulfide bond linkage and detect disulfide scrambling
- Fab/Fc Mass Analysis detect potential LC swapping
- Free thiol analysis measure free thiol content
- **DSC** evaluate thermal stability


BsAb Structural Integrity Characterization

Theoretical Disulfide Bonds in BsAb

BsAb

NR Tryptic Peptide Map of BsAb



All 10 Disulfide Bonds Were Confirmed

Structural Region	Disulfide Bond	Peptide	Retention Time (min)	Expected Mass (Da)	Observed Mass (Da)	Mass Error (Da)
V ₈ 4005	HC1(C22)-HC1(C96)	HC1(20-38) C22 HC1(88-98) C96	100.5	3378.49	3378.51	0.02
V ₈ 9541	HC2(C22)-HC2(C96)	HC2(20-38) C22 HC2(88-98) C96	97.5	3402.48	3402.51	0.03
CH:	HC1(C152)-HC1(C208) or HC2(C146)-HC2(C202)	HC1(142-155)C152 HC1(156-218)C208 or HC2(136-148)C148 HC1(156-218)C208	135.3	7916.92	7916.95	0.03
LC-HC	HC1(C228)-LC1(C214) or HC2(C222)-LC2(C214)	-{HC1(227-230) C228 LC1(208-214) C214 LC1(208-214) C214 or -{HC2(221-224) C222 LC2(208-214) C214	22.1	1260.49	1260.49	0.00
Hinge	HC1(C234,C237)- HC2(C228,C231)	HC1(231-256)-C234 C237 HC2(225-250)-C238 C231	133.4	5454.78	5454.84	0.06
CH:	HC1(C269)-HC1(C329) or HC2(C263)-HC2(C323)	HC1(264-282) C269 HC1(329-330) C329 HC2(323-324) C323	75.3	2328.10	2328.12	0.02
		HC1(264-282)-C269 HC1(326-330)-C329 HC2(326-324)-C323	74.2	2748.30	2748.33	0.03
	HC1(C375)-HC1(C433) or HC2(C369)-HC2(C427)	HC1(425-447)C433 or HC2(419-441)C427	95.1	3844.82	3844.86	0.04
CH		-{HC1(369-378)C375 HC1(423-447)C433 or HC2(363-372)C369 HC2(417-441)C427	94.0	4087.96	4087.98	0.08
V. 4005	LC1(C23)-LC1(C88)	LC1(19-24) C23 LC1(82-103)C88	127.6	5280.42	5280.48	0.06
1,1000		LC1(1-24) C23 LC1(02-103) C88	129.3	7078.34	7078.40	0.06
V ₆ 9541	LC2(C23)-LC2(C88)	LC2(19-24) C23 LC2(62-103) C88	126.1	5215.42	5215.48	0.06
		{LC2(1-24) C23 I LC2(82-103)C88	125.7	7061.27	7061.35	0.08
CL	LC1(C134)-LC1(C194) or LC2(C134)-LC2(C194)	LC1(127-142) C134 LC1(191-207) C194 C2(191-207) C194	107.6	3555.75	3555.78	0.03

High mass accuracy MS and MS/MS give unambiguous peak assignments

Mass Analysis of Fab, Fc shows no evidence of LC Swapping

Janssen

Jingjie Mo

BioTherapeutics Development Confidential Draft : <u>not for distributio</u>

21

24

PHARMACEUTICAL COMPANIES OF

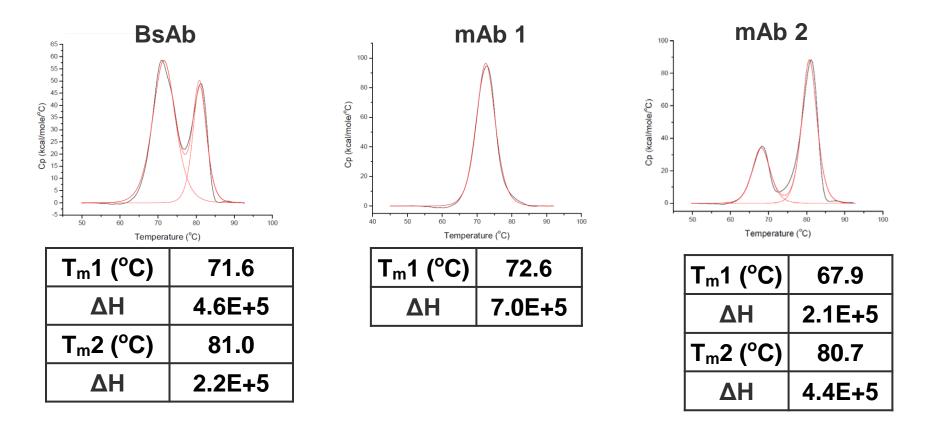
Johnson & Johnson

Free Thiol Analysis of BsAb and IgG1 Parentals

Sample	Mean Free SH/Protein (mol/mol)	SH%*	
BsAb, Lot M1D03-14	0.26	0.8%	
mAb 2, Lot M14D012	0.13	0.4%	
mAb 1, Lot M1D23-14	0.19	0.6%	

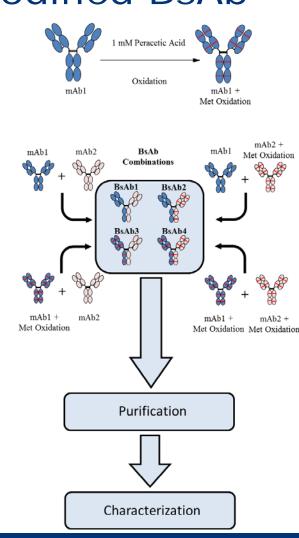
* SH% = mean free SH per protein / 32 * 100%

Jingjie Mo


 Observed free thiol values for BsAb and IgG1 parentals mAb1 and mAb2 were typical for Janssen IgG1 products.

BioTherapeutics Development Confidential Draft : not for distribution

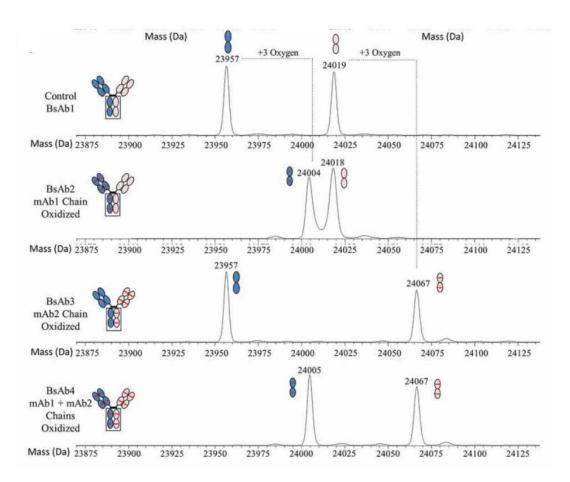
DSC Analysis of BsAb and Parentals in Formulation Buffer


• DuoBody inherited T_ms from both parentals.

BioTherapeutics Development onfidential Draft : not for distribution

Jingjie Mo

Structure–function of symmetrically and asymmetrically modified BsAb


Robust assembly of BsAb in presence of Oxidized Fab Arms

BioTherapeutics Development onfidential Draft : not for distribution Adam Evans et al. mAbs 2019

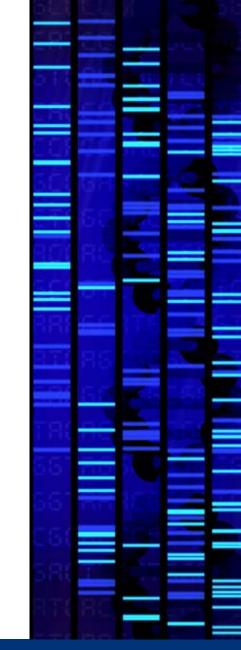
janssen 🔽 |

pharmaceutical companies of Johnson Johnson

Structure–function of symmetrically and asymmetrically modified BsAb

	Duobody Combination				M254 Oxidation (Peptide Map)			Fc Binding Assay*		
	Description	mAb1	mAb2	mAb1	mAb2	Final Product	FcRn	FcγRI	FcγRII	FcyRIII
	BsAb1	Native	Native	3.8%	3.0%	5.7%	100%	100%	100%	100%
	BsAb2	Native	Oxidized	3.8%	99.9%	56.4%	44.4%	97.6%	94.3%	102.1%
8	BsAb3	Oxidized	Native	99.9%	3.0%	57.6%	54.3%	120.2%	89.7%	106.4%
	BsAb4	Oxidized	Oxidized	99.9%	99.9%	99.4%	8.6%	128.6%	112.6%	125.5%

*Binding is normalized relative to control


- Asymmetrically oxidized BsAb 2 & 3 bind ~ 50% of the FcRn vs the control BsAb1
- Experimental support for 2:1 FcRn: IgG binding ratio
- FcRn can bind independently to either chain.

BioTherapeutics Development Confidential Draft : not for distribution Adam Evans et al. mAbs 2019

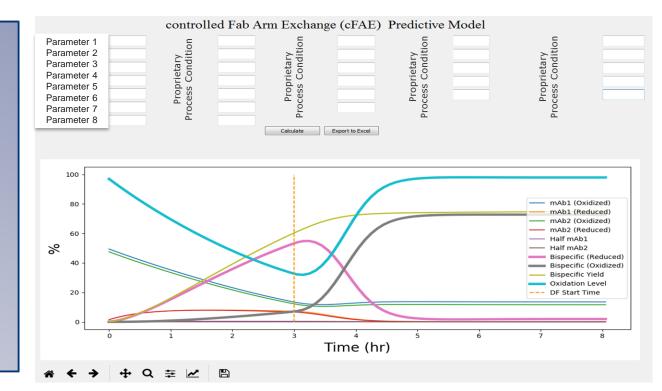
Outline

- DuoBody[®] platform and cFAE overview
- Kinetic Studies and ∆G
- cFAE Rxn Mechanism & Manufacturing Insight
- Characterization and Structure Function
- cFAE Model development

BioTherapeutics Development Confidential Draft : not for distribution

Modeling cFAE Chemistry:

- Optimizing Process Parameters
 - Finding the target and MORs
- Defining a Design Space
 - Designing DOE studies
- Limiting the Number of experiments
 - Avoiding unnecessary experiments
 - Reducing development time
- Monitoring and Investigating
 - Using the model to investigate failed batches

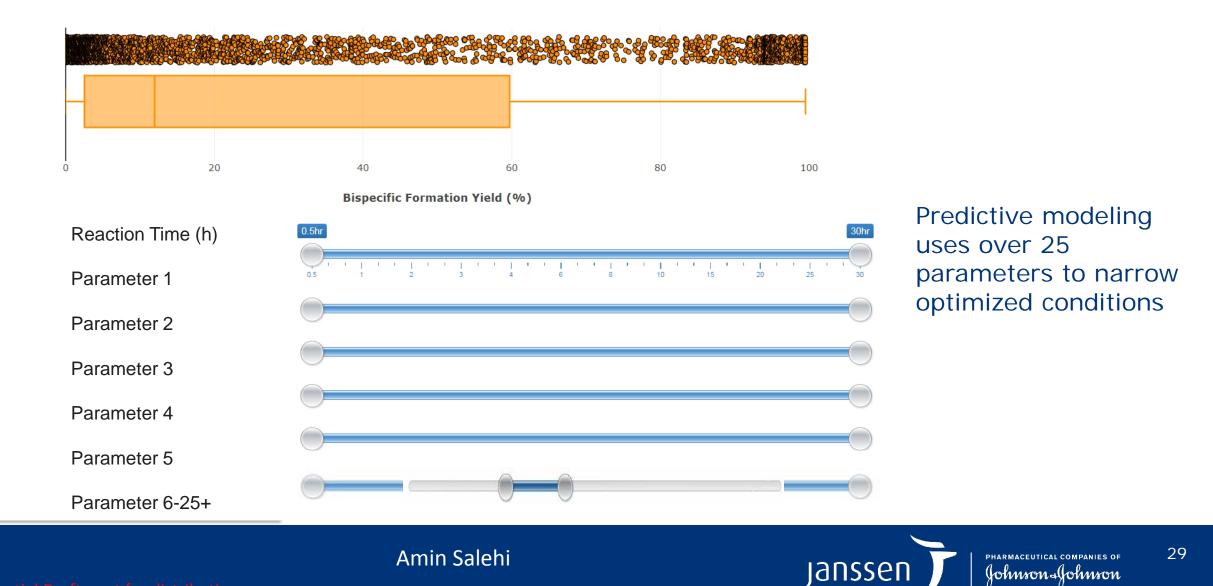

BioTherapeutics Development Confidential Draft : not for distribution

cFAE model considerations and outline

Mixed Model

- First principles
- Experimental Data
 - Lab & Manufacturing Scale
- Mechanism of Action
- Kinetic Forms
- Linear/Non-Linear behavior

Interactive web based app uses >25 parameters to predict BsAb reformation of disulfides


BioTherapeutics Development Confidential Draft : not for distribution Amin Salehi

Using cFAE model to guide design space selection

MOR Selection

Johnson & Johnson

Key Messages

- Controlled Fab arm exchange (cFAE) is a robust process
- Leverage existing mAb platform & yields: 2 cell lines & USP
- cFAE understanding is key to manufacturing control
- BsAb characterization supports correct assembly and Structure/Function
- cFAE modeling optimizes development and design space
- DuoBody® technology is translated into a robust manufacturing platform for Janssen BsAbs

BioTherapeutics Development Confidential Draft : not for distribution

Jans

Thank You

Acknowledgements

- John Knighton, Barry McCarthy, Chuck Goochee, Graham Tulloch
- API Bispecific Teams: Mike Capaldi, Scott Jarvis, Frank Maslanka, Dan Bezila, Raphael Bertrand, Mike Sobkow, Jeff Cohen, Amin Salehi
- AD colleagues: Ping Hu, Jingjie Mo, Adam Evans, Mike Lewis
- Janssen Bio Discovery colleagues: Mark Chiu
- Leiden and Cork Manufacturing

