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‘Multi-Block’ Data Matrix

f measurements t measurements f measurements f measurements f measurements

Variable 1 Variable 2 Variable 3 variable k

n batches / observations
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Overarching Goal
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The nature of our multiple objectives

* Process/Analytical understanding
* |Improvement/optimization

* Root causes for changes

* Process Monitoring

These objectives have been mode more interesting (or complicated) due to
automation and the exponential increase in sampling frequencies.
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Trends in academic research related to fault diagnosis
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“Trends in academic research related to fault diagnosis based on number of
publications in the IEEE Xplore digital library from 1991 to 2010” - Aldrich, C., Auret, L.,
Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods,
Springer-Verlag London 2013
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‘Unsupervised’ Machine Learning

«  Given the explosion of available process data, due to automation, it may work better in the
higher-dimensional spaces we will be forced to work in

* |t encompasses a wide range of proven methods
*  Flexible modeling options via parameter fine-tuning

«  Cross-validation (via reconstruction error) is how one chooses an optimal method for
iImplementation

*  (Can be computationally expensive

Wherever traditional MVDA is being used, unsupervised machine learninq methods
can be plugged-in
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Common Projection/Dimensionality Reduction Methods

 Principal Component Analysis (PCA) = current most popular Euclidian
method

e Unsupervised Random Forest
« Kernel PCA
 Independent Component Analysis

» Locally linear embedding
* t-SNE
Many others...
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Common Projection/Dimensionality Reduction Methods

 Principal Component Analysis (PCA) = current most popular Euclidian
method

e Unsupervised Random Forest
« Kernel PCA
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What is a latent variable in everyday life?

Happiness

*How do you measure happiness?

-Again, it is a combination of factors
» Work-life balance
* Health (a latent variable itself)
» \/acation days
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What is a latent variable in everyday life?

Happiness
*How do you measure happiness? X
~Again, it is a combination of factors ¢ T’
» Work-life balance Work /
Vacation Days

* Health (a latent variable itself)
» \/acation days

Grey shaded area is the ‘latent space’
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What is the best way to determine
the distance between observations?
Turns out there’s quite a few ways...
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What is the best way to determine
the distance between observations?
Turns out there’s quite a few ways...
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‘Intuitive’ Distance Metrics
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Euclid provides a ‘short-cut
between two points =

the predominant method in
process monitoring and
fault detection A

(_170)
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Euclid provides a ‘short-cut’

between two points =

the predominant method in

process monitoring and

fault detection Ay

An elegant consequence of using Euclidian distances is that -
(double-mean centered)/2 the square of this matrix results in, after
mean-centering X, in XX’ = PCA - derive loadings

SVD
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Manhattan (or Minkowski with lambda = 1)
provide the 'taxi-cab’ direction between
two points
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Manhattan (or Minkowski with lambda = 1)
provide the 'taxi-cab’ direction between
two points

Manhattan distance matrix :

I
»

w

SVD
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Geometrically what does it all mean?

0.5+

-0.51

-1.01
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Distance Metrics in High Dimensional Space
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Examples of a not so ‘Intuitive’ Distance Metrics
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[Unsupervised] Random Forest

€% MERCK



[Unsupervised] Random Forest
>40

Repeat this process many times but add in
/ ‘ 1. bootstrap sample for each tree

2. Ateach node, randomly select a subset
Resveratol of predictors to determine a split
> 9 3. Grow an un-pruned tree
4. Vote across all trees in the forest for
classification assignment

No
In URF, observations that are modeled

@ @ m together in the tree are deemed similar
Wine
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URF — model/probabilistic
based distance

Across n bootstrap samples
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Biologics Mfg. Simulated Example where we perform a
multivariate process scale comparison
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‘Multi-Block’ Data Matrix

f measurements t measurements f measurements f measurements f measurements

Variable 1 Variable 2 Variable 3 variable k

n batches / observations
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Simulated Process Trajectory Curves
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Data Pre-processing

Principal Component Analysis Unsupervised Random Forest
« |f categorical variables present, perform one-hot « One-hot encoding not necessary for categorical
encoding variables

« Means that categorical variable are assessed as

« Scale to unit-variance . .
a single contributor to the model

* Ready for analysis _
* Ready for analysis
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PCA Scores (3 Principal Components

Scores Plot
99% Confidence Ellipse Calculated All Lots

10+

Scores Plot
99% Confidence Ellipse Calculated All Lots
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URF PCoA Scores (3 Principal Coordinates)

PCoA 1 and PCoA 2 PCoA 1 and PCoA 3
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PCoA 2 and PCoA 3

URF gets very close to
approximating a linear
kernel
(don't forget this point)

PCoA3
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Variables Contributing to PCA Clustering

Sum of Squares of Block Contribution (All) Sum of Squares of Block Contribution (All)
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Variables Contributing to PCoA Clustering
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VIP Across all PCoAs
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What did PCA & URF discover?
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Note that if we looked at the unscaled data using PCA the results could

change dramatically e MERCK
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But walit, there’s more & here
'S where It gets more
interesting (i.e. challenging)!
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What if I'm dealing with highly non-linearly separable original spaces?
Here we bring in Kernel PCA
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Kernel PCA
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Why do we care? Because now all we need to do is simply l
calculate the inner product and implicitly map to the higher-

dimensional space, i.e., we do not have to map to ¢and THEN Svd(XX')
compute the inner product.
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Kernel PCA
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PC2

2D Projections

Scaled to Unit Variance

PCA on CC Sim Data (Scale = TRUE)

Polynomial Kernel on CC Sim Data ( degree =2)
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2D Projections

Scaled to Unit Variance

PCA on CC Sim Data (Scale = TRUE)

Polynomial Kernel on CC Sim Data ( degree =2)
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2D Projections

Scaled to Unit Variance

PCA on Poly Sim Data (Scale = TRUE)

Polynomial Kernel on Poly Sim Data ( degree =2 )
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PC2

PC2

PCA on Poly Sim Data (Scale = TRUE)

2D Projections

Scaled to Unit Variance

Polynomial Kernel on Poly Sim Data ( degree =2 )
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Final Thoughts

e Distance metrics abound

« Successful dimensionality reduction is dependent on finding a suitable distance metric in order to carry out the
‘optimal’ embedding of the original data unto a lower-dimensional space

« The singular use of Euclidian distances (among other L,-Norms) may be suboptimal
 scale dependent (like others)
« curse of dimensionality
 non-linearly separable structures
« forces an increase in dimensionality in the presence of categorical variables due to one-hot encoding

Method in unsupervised machine learning should be explored in parallel with current methods to determine
their usefulness
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THANK YOU!
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