AMGEN'S ATTRIBUTE BASED CONTROL STRATEGIES

TOM MONICA DIRECTOR, CMC LIFECYCLE MANAGEMENT, AMGEN INC.

Attribute based control strategies

Attribute based control strategies are a fundamental element of our QBD approach, and are founded on controlling product quality attributes to targeted levels determined by a risk and science-based understanding of the impact of the attribute on safety and efficacy

The implementation of these strategies include:

- Optimal levels of in-process and specification testing
- Detailed understanding of product analytics and the application of new technologies to drive attribute-based control
- Leveraging of prior and platform knowledge in the determination of attribute impacts and target levels

Biologics have numerous product quality attributes Attribute based control is designed for identification, and appropriate control of each of the Critical Quality Attributes of a molecule

Peptide modifications

- Deamidation
- Succinimide
- Oxidation
- Glycation
- C-terminal variants
 - HC- Lys
 - HC-ProAmide
- N-terminal variants
 - Pyro Glu
- Amino acid substitution
- Truncation
- Half molecules
- Disulfide isoforms

Attribute based control

- Attribute based control begins with the clinical and commercial goals of the Target Product Profile (TPP)
- A Product Quality Attribute Assessment (PQAA) is used to assess the impact of the product quality attributes on safety and efficacy, and determine the Critical Quality Attributes (CQAs)
- A Quality Target Product Profile (QTPP) is used to establish the target levels of the CQAs that will meet the goals of the TPP
- This information is used during product candidate selection and throughout the product lifecycle
- The QTPP is ultimately aligned with, though not identical to the final product Specifications

Product Quality Attribute Assessment (PQAA): identify attributes & impact Quality Target Product Profile (QTPP): setting appropriate target ranges

Target Product Prof	ile -> Identifying Attributes	-> Scoring impact on safety ->	Target ranges
	Monoclanal antibody - Monoclanal antibody - Monoclanal antibody - Monoclanal antibody - Monoclanal antibody - Monoclanal -	Product Quality Attribute Assessment	Quality Target Product Profile
CDR modifications	Oxidation, Deamidation, Isomerizatio (molecule specific)	 Loss of potency 	• Low, < x %
Fc binding regions	Methionine oxidation	 PK and efficacy 	• Low, < x % ± y%
Glycan structure	High mannose variants (IgG class)	 PK and efficacy 	• Low, < x % ± y%
	Sialylation	• PK	• high x- y%
Other backhone	Disulfide variants (IgG2, IgG4)	Potency	 Depends on criticality
Other backbone modifications and aggregated forms	Truncated/clipped forms	 Potency and PK due to missing functional regions 	• high, < x%
	Host Cell Protein	Immunogenicity	• xppm

Product Quality Risk Assessment

A Product Quality Risk Assessment (PQRA) is also applied for each PQA across each unit operation, to de-risk where the process impacts the attributes

The PQRA is used iteratively with prior and accumulated process knowledge to help establish the integrated control strategy. The outcome of this combined process understanding results in:

- Critical process parameters determined at each unit operation where a PQA is impacted
- In-process, specification and stability testing, which reduce or mitigate risks identified by the PQRA to attribute control

End-to-end lifecycle: TPP,PQAA, QTPP and PQRA

As the clinical and commercial product targets evolve during the product lifecycle, and knowledge is accumulated on the product and process, the TPP, QTPP and PQAA are adjusted and aligned against each other, and eventually along with the PQRA

TPP – Target Product Profile QTPP – Quality Target Product Profile PQAA – Product Quality Attribute Assessment PQRA – Product Quality Risk Assessment These assessments drive process development focus and improvement

AMGE

Target Product Profile

• Attribute base control begins with the clinical and commercial goals of the Target Product Profile (TPP)

Att	tribute	Performance						
Order of	f Entry/MoA	1 st in Class						
	Symptom day reduction	 Reduction in XX at AA wks vs placebo = -YY days 						
	Responder rate	BB% of patients experience CC% reduction in Z at 12wks						
Efficacy	Sub-populations	 Baseline characteristics in label state significant proportion of patients included in pivotal studies had previously had an inadequate response loss of response, or intolerance to prior treatments 						
	Reduction in meds	Reduction in use & type of medications						
Tole	erability	Tolerability profile comparable to in a single head to head trial						
Safety/S	Bide Effects	Safety profile without any major safety findingsEvidence of long term safety at time of launch						
Dosing & Admin	Dosing & Admin	Single QM dose, SC injection						
	Device	Autoinjector						

Product Quality Attribute Assessment

The Product Quality Attribute Assessment (PQAA) is applied to the product quality attributes of the product to determine the Critical Quality Attributes (CQAs)

- Each PQA is scored independently for Safety and for Efficacy, resulting in a Overall Severity Score for the attribute
- The determination of scores relies heavily
 on prior and platform knowledge
- Safety is scored in terms of both immunogenic and non-immunogenic risks, while Efficacy scores consider PK and Potency impacts.
- Safety concerns will determine a CQA regardless of efficacy scoring
- Scores range from 1 (low impact) to 9 (high impact), with overall scores ≥ 5 generally considered CQAs

	Product Quality Attribute	Immunogenicity - Reduce Risk	Non-immune Safety - Reduce Risk	PK - Long PK desired	Potency-Loss Target High, Consistent Potency (No Limit)	Potency-Gain Target High, Consistent Potency (No Limit	Directional Goal
duct 1	Met Ox (CDR)	5	NA	NA	5	NA	Low
ty-Pro elated	Met Ox (non CDR)	5	NA	7	1	NA	Controlled
Purit	Mutation Misincorp	5	NA	5	1	NA	Controlled
ion	Fucosylation	1	7	1	NA	9	High
osylat	Galactosylation	1	7	1	1	1	Controlled
Glycq	High Mannose	1	7	7	NA	7	Low

The scientific understanding of the CQA impact on safety and efficacy based on prior knowledge may be sufficiently comprehensive to allow limits to be set independently of clinical experience

Appropriate Specifications are Critical to Integrated Control Strategies

Experimental data indicate that Met Ox no apparent impact on Safety or Efficacy

Conclusions:

- <u>Safety:</u> Met oxidation does not appear to increase immunogenicity risk as shown by the in vitro cell-based assays and the in vivo Xeno-het mouse model
- <u>Clearance:</u> Oxidation at the conserved Fc met 252 and 428 under reasonable conditions has negligible impact on FcRn binding and subsequent PK clearance (Stracke et al., mAbs, 2015 6:5, 1229-1242)

RISK AND SCIENCE BASED SPECIFICATIONS FOR MET OX AND SIMILAR ATTRIBUTES SHOULD NOT BE LIMITED TO CLINICAL EXPERIENCE WHERE PRIOR KNOWLEDGE INDICATES LOW RISK

ATTRIBUTE BASED SPECIFICATIONS SHOULD BE ESTABLISHED BY APPLICATION OF BOTH CLINICAL EXPERIENCE AND APPLICABLE PRIOR KNOWLEDGE

THIS APPROACH WOULD ACHIEVE <u>KNOWLEDGE</u> AND <u>EXPERIENCE</u> BASED SPECIFICATIONS

Quality Target Product Profile

- The QTPP is used to establish the target levels of CQAs determined by the PQAA, that will meet the goals of the TPP in terms of safety, efficacy, PK, dosing, etc.
- The PQAA and QTPP are applied iteratively through the lifecycle of a product, as more knowledge is accumulated on the product and the process

Category	Attribute	Target Range	Current Observed Range
Strength	Concentration	126 – 154 mg/mL	131 – 149 mg/mL
	HC Asp Isomerization	≤ 2%	0.1 - 0.5%
	LC Trp Oxidation	≤ 5%	0.1%
	HC Met Oxidation	≤ 5%	0.3 - 0.9%
	HC Met Oxidation	≤ 5%	0.4%
	Met Oxidation	1% – 7%	2.5 - 4.1%
	Met Oxidation	≤ 5%	0.7 – 1.6%
	High Mannose Glycans	2% – 12%	6.2 - 8.5%
Quality	Protein Dimer/Oligomers (SEC HMW)	≤ 1%	0.4 - 0.6%
	Protein Fragmentation (rCE LMW+MMW)	≤ 1%	< 0.6%
	Glycation (LC K)	≤ 5%	0.8 - 1.5%
	Hydroxylysine (HC K)	≤ 2%	< 0.1%
	Hydroxylysine (HC K)	≤ 2%	1.0 – 2.0%
	Osmolality	250 – 350 mOsm/kg	301 – 312 mOsm/kg
	Polysorbate 80	0.005% - 0.015%	0.009 - 0.013%
	pН	4.9 - 5.5	5.1 – 5.2
	Host Cell Protein	≤ 100 ppm	20 – 49 ppm
Safety	Residual Protein A	< 6 ppm	< 1 ppm
Galloty	Endotoxin	≤ 0.25 EU/mg	≤ 0.0022 EU/mg
	Bioburden	< 10 CEU/10 ml	0

Product Quality Risk Assessment (PQRA)

A Product Quality Risk Assessment is applied - combined with process understanding - for each CQA/PQA across each unit operation, to assess where the process impacts the attributes

Unit Operation	cDNA	Clone/cell line	Cell banking	al TEX00489819 Pt lasks	Bioreactors	Harvest	Harvest Pool Hold	Column 1	olumn 1 Pool Hold	Low pH / VI	tered VI Pool Hold	Column 2	olumn 2 Pool Hold	Column 3	olumn 3 Pool Hold	Viral Filtration	VF Pool Hold	UF/DF	UF/DF Pool Hold	Drug Substance
Quality Attribute				, N		Ĕ			Õ		Ē		Õ		Õ				_	
Oligomer		Low			Medium		Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	
Aggregates		Low			Medium		Low	Medium	Low	High	Low	Low	Low	Low	Low	Low	Low	Medium	Low	
CDR Trp-ox					Low		Low		Low		Low		Low		Low		Low		Low	
C-term lys					Low									Low	Low					
Deamidation - CDR					Low		Low						Low							
Deamidation - non-CDR					Low		Low					Low	Low							
Fragmentation					Low	Medium	Low	Low												
Free –SH, Cys Adducts	Low				Low	Medium	Low													
Glycation					Low		Low						Low		Low					
HC C-term proline amidation		Low			Low															
Hydroxylysine		Low			Low															
gG2 Disulfide Isoforms					Low															
Met Ox CDR					Low	Low														
Met Ox non-CDR					Medium	Medium														Low
N-term Pyro Glu					Low															
N-term signal seg variants	Low	Low			Low															
Thioether	LOW	LOW			Low															
Trisulfido					Low															
Fusesulation					High															
Calastaniation					High															
Galactosylation		1.000			High		-													
High Manhose Giycan Species		LOW			High															
Non-consensus Glycosylation					High															
Non-glycosylated HC					High															
Sialic Acid					Low															
Unusual Fc glycans					Low															
СНОР					Low	Low		High		Low		Low		Low						
Residual host cell DNA					Low	Low		Low				Medium		Low						
Residual Protein A								Low				Low		Low						
Appearance																		Low	Low	
Bioburden			Low	Low	L o Low w	High	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Low
Clarity																		Low	Low	
Color	Low																	Low	Low	
Endotoxin				Low	L o Low w	Medium	Low	Low	Low		Low	Low	Low	Low	Low		Low	Low	Low	
Osmolality																		Low		
pH	1				11	1												Low		
Product Conc																		Low		
1000010101				-														2011		

Product Quality Risk Assessment

Quality Attribute:

Oligomer - HMWS < tetramer

Potential Adverse Impact:

Minor impact to potency

The PQRA evaluates each PQA using an FMEA approach, including:

- Qualitative impact of the unit operation (UOP) on the attribute
- Control elements associated with the UOP including procedural controls, raw material controls, and testing controls including characterization and/or comparability
- Occurrence score for the UOP and _____ associated risk level
- Detection at the UOP, where detection score accounts for capability and stringency of detection, and overall risk accounts for detection downstream of each UOP

							Cont	trol E	Elem	ents						Occurr	ence		Risk	Detection	at Unit	Oper	ration	Downstrea Detectio	am n	ion
-	Unit Operation	Correlation (↑,↓ or testing only)	Procedural Controls	Raw Materials and Components	Only	Clinical In-process (PD Clin Mfg)	Monitoring	IPC (Action Limit) IPC (Reject Limit)	Clinical INV Limits	DSI Release Spec	DP Release Spec	DS Stability	DP Stability	Validation (DS, DP, Transport, etc)	Comparability	Occurrence Supporting Information	Occurrence Decision Tree Code	Occurrence Score	Preliminary Hazard F Level	Detection Method	Capability (n)	Stringency (i)	Detection Score	Detected downstream (if yes, list step)?	Overall Detection Score	Overall Unit Operat
	12Filtered VI Pool Hold	Ŷ	x		x		x							x		HMP pool hold studies	е	1	Low	SEC (MET- xxxxx)	9	5	7	Yes, Column 2 Pool Hold	1	Lo
	13Column 2	Ļ	x		x											Development studies and confirmation runs	е	1	Low	SEC (MET- xxxxx)	9	9	9	Yes, Column 2 Pool Hold	1	Lo
	14 Hold	î	x		×		x							x		HMP pool hold studies	е	1	Low	SEC (MET- xxxxx)	9	5	7	Yes, Column 3 Pool Hold	1	Lo
	15Column 3	Ļ	x		x											Development studies and confirmation runs	J	5	Medium	SEC (MET- xxxxx)	5	9	7	Yes, Column 3 Pool Hold	1	Lo
	16 ^{Column 3 Pool} Hold	¢	×		x		,	×						x		HMP pool hold studies		▶ 5	Medium	SEC (MET- xxxxx)	5	3	4	Yes, UFDF Pool Hold	1	Lo
_	17Viral Eiltration	-	×		x									x		Development studies and confirmation runs	J	5	Medium	SEC (MET- xxxxx)	9	5	7	Yes, UFDF Pool Hold	1	Lo
	18VF Pool Hold	î	x		x		x		Π							HMP pool hold studies	f	3	Medium	SEC (MET- xxxxx)	9	9	9	Yes, UFDF Pool Hold	1	Lo
	19UF/DF	î	x		x											Development studies and confirmation runs	f	3	Medium	SEC (MET- xxxxx)	5	9	7	Yes, UFDF Pool Hold	1	Lov
	20UF/DF Pool Hold	î	x		x		x							x		HMP pool hold studies	f	3	Medium	SEC (MET- xxxxx)	5	5	▶ 5	Yes, DS Release and Stability	1	Lo
1		Quali	ty Att	ribute	eOve	erall R	isk L	evel																		Lo

Severity Score:

Product Quality Risk Assessment

- The level of risk of to the control of a CQA can be reduced by adding specific in-process, stability or specification testing or improving process control
- Testing may include no tests, where the PQA is controlled at low risk without testing, in-process testing only where specification testing is not required, to specification and stability testing where appropriate
- The introduction of new testing technologies such as MAM* allow for PQA specific testing, rather than category base testing (e.g., acidic species)

*MAM is a peptide map/mass spectrometric methodology employed by Amgen to assay multiple specific PQAs Quality Attribute: Olicomer - HMWS ≤ tetramer Potential Adverse Impact:

Severity Score:

Downotroom

		Control Elements												Occurrence			Rist	Detection a	at Unit	Oper	ation	Detectio	n	tion
Unit Operation	Correlation (↑,↓ or testing only)	Procedural Controls	Components Components Characterization	Only Clinical In-process	Process/Product Monitoring	IPC (Action Limit)	IPC (Reject Limit) Clinical INV Limits	DSI Release Spec	DP Release Spec	DS Stability	Volidation (DS, DD	Transport, etc)	Comparability	Occurrence Supporting Information	Occurrence Decision Tree Code	Occurrence Score	Preliminary Hazard Level	Detection Method	Capability (n)	Stringency (i)	Detection Score	Detected downstream (if yes, list step)?	Overall Detection Score	Overall Unit Opera Risk Level
12 ^{Filtered VI Pool} Hold	î	x	;	×	x							x		HMP pool hold studies	е	1	Low	SEC (MET- xxxxx)	9	5	7	Yes, Column 2 Pool Hold	1	Low
13Column 2	↓	×	:	×										Development studies and confirmation runs	е	1	Low	SEC (MET- xxxxx)	9	9	9	Yes, Column 2 Pool Hold	1	Low
14 Hold	î	x	1	ĸ	x							x		HMP pool hold studies	е	1	Low	SEC (MET- xxxxx)	9	5	7	Yes, Column 3 Pool Hold	1	Low
15Column 3	↓	×	:	×										Development studies and confirmation runs	J	5	Medium	SEC (MET- xxxxx)	5	9	7	Yes, Column 3 Pool Hold	1	Low
16 ^{Column 3} Pool Hold	¢	x	1	ĸ		x						x		HMP pool hold studies	L	5	Medium	SEC (MET- xxxxx)	5	з	4	Yes, UFDF Pool Hold	1	Low
17Viral Filtration	¢	×	:	×								x		Development studies and confirmation runs	J	5	Medium	SEC (MET- xxxxx)	9	5	7	Yes, UFDF Pool Hold	1	Low
18VF Pool Hold	¢	x	3	×	x								-	HMP pool hold studies	f	3	Medium	SEC (MET- xxxxx)	9	9	9	Yes, UFDF Pool Hold	1	Low
19UF/DF	¢	x	:	×										Development studies and confirmation runs	f	3	Medium	SEC (MET- xxxxx)	5	9	7	Yes, UFDF Pool Hold	1	Low
20UF/DF Pool Hold	t	x		×	x							x	•	HMP pool hold studies	f	3	Medium	SEC (MET- xxxxx)	5	5	5	Yes, DS Release and Stability	1	Low
Quality Attribute Overall Risk Level											-							Low						

Testing is reduced to the level necessary, in alignment with the risks, with the elimination of redundant or non-value added testing

Critical Process Parameters

Critical process parameters are determined at each unit operation where the CQA is impacted, based on process knowledge

- ICH Q8: Critical Process Parameter: A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality.
- The determination of process parameter impacts on CQAs can be derived from prior or platform knowledge, DOE studies and/or in-silico modelling.
- The impact ratio method is computed as the change in a CQA from the midpoint to the limit of the process parameter acceptable range (AR) divided by the difference between the CQA value at the midpoint of the PP acceptable range and the acceptable limit of the CQA at the process step.

```
= \frac{CQA Value at Process Parameter limit - CQA Value at the Process Parameter Midpoint}{CQA Limit - CQA Value at the Process Parameter Midpoint}
```

• A process parameter with an impact ratio >0.2 is considered a CPP, based on the determination that a 20% shift in the CQA across the PP acceptable range is significant and identifies a CPP

CPPs are not based on failure of an attribute across the process parameter range

Example: mAb non-CDR Fragmentation PQAA/QTPP

The PQAA for this specific fragmentation species might indicate an Overall Severity Score of 5 making this species a CQA

Quality Attribute	Attribute Information	Saf	ety	Effic	PQA Severity Ranking	
		Immuno- genicity Risk	Non- Immune Safety Risk	PK	Potency	
Non-CDR Fragmentation	1 potential DP site in Fc	5	N/A	5	5	5

The QTPP range for non-CDR fragmentation for a typical product might be ~1% in order to ensure that at that the target level of dosing there is no impact on S&E

Attribute	Target Range
Non-CDR Fragmentation	0 - 1%

However, the typical clipped species assay (rCE-SDS) cannot distinguish between the different variants of clipped species. With a typical approach we cannot decouple control of this CQA from control of other attributes

Attribute specific control is enabled with methodologies such as the Multi Attribute Method

- MAM can directly identify and quantify specific PQAs, which enables Amgen to design a more attribute specific QTPP
- With regards to clipped species, MAM can identify the level of specific clips which are CQAs, distinguishing from those clipped species which are not, allowing detailed CQA control

Example: non-CDR Fragmentation PQRA

- The PQRA for Drug Substance (DP not shown) indicates potential formation and/or removal at a number of steps
- Multiple controls are in place across the process
- In-process testing using MAM is included at the VI pool, which reduces the control risk
- There is no other testing

 this is considered the optimal level of testing for the CQA

Example: mAb non-CDR Fragmentation Critical Process Parameters (CPPs)

- Prior knowledge, process models, and DOE experiments provide a knowledge basis for assessing nCPPs and potential CPPs
- Based on impact ratio calculations, one CPPs impacting non-CDR fragmentation may be identified at the Viral Inactivation step

Unit Operation	СРР	Operating Range	Impact Ratio
VI Pool Hold	Time	60-90 min	0.4

Summary

- Amgen's approach to attribute based control relies on prior knowledge and product specific knowledge to identify CQAs and establish safe and efficacious target ranges
- Attribute based control requires a detailed product characterization and/or appropriate analytical technologies to enable attribute specific measurements
- A deep understanding of the product, and the impact of the process on CQAs, allows specific control of CQA levels to designed targets in order to achieve clinical and commercial goals

ACKNOWLEDGEMENTS

- Jette Wypych
- Mike Abernathy
- Bob Kuhn
- Trent Munro
- Chantal Cazeault
- Andy Spasoff

