Using Structure/Function Relationships to Identify CQAs and Develop Analytical Specifications

Michael J. Lewis, Maggie Huang, Qingrong Yan, Qing Mike Tang, and Ping Hu

Specifications

ICH Q6B: "<u>A specification is defined as a list of tests</u>, references to analytical procedures, <u>and appropriate</u> <u>acceptance criteria</u> which are numerical limits, ranges, or other criteria for the tests described."

Options for setting Acceptance Criteria (AC):

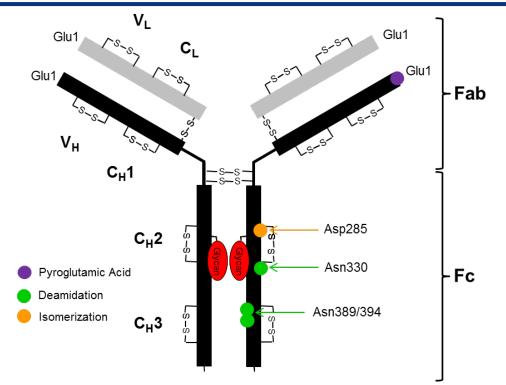
- Published guidelines (sterility, endotoxins, etc)
- Manufacturing capability / clinical experience
- Link AC to product safety and efficacy

Use structure / function data to set "clinically relevant" AC based on impact to biological functions

- Multi-point, forced degradation studies with structural modeling and full analytical characterization are the foundation for PTM control strategy. Use these data to:
- Clearly identify PTM CQAs (deamidation & oxidation)
- Set "clinically relevant" AC based on S/F correlations rather than statistical analysis of mfg batches

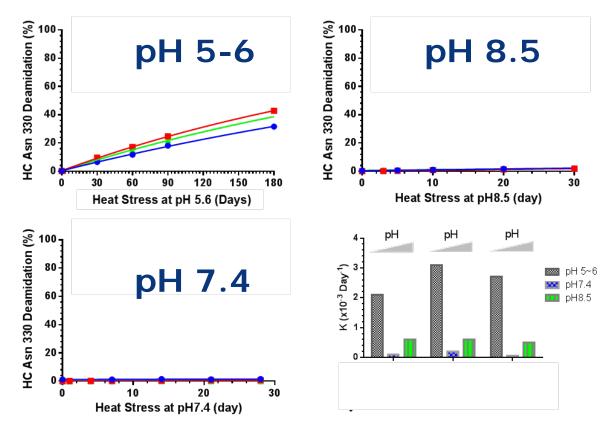
PHARMACEUTICAL COMPANIES of **Johnson Johnson**

Forced Deg Workflow


- Evaluate heat, peroxides, light, pH and glucose stress
- Prep 4-6 samples under each stress condition
- Fully characterize all samples using the assays below to identify CQAs and establish S/F correlations

Quality Attributes	Analytical Methods
Primary Structure	Peptide Map
Glycosylation and Glycation	Oligo Map and Intact Mass
Charge Heterogeneity	CIEF
Size Heterogeneity	SE-HPLC and cSDS
Higher Order Structure	CD, AUC and DSC
Biological Functions (depending on MOA)	Bioassay and Ag Binding
	CDC, ADCC, FcyR and FcRn Binding

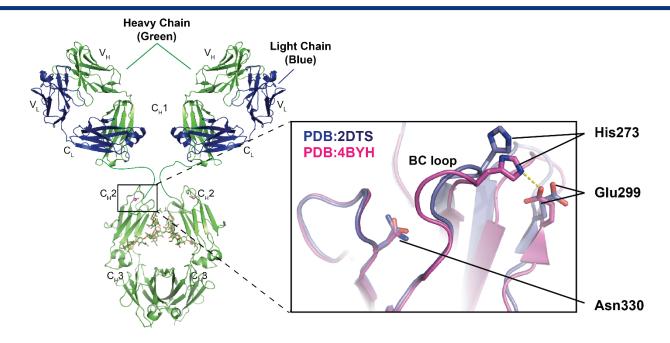
Heat Stress Impacts Biological Function


6M Heat Stress Study in pH 5.5 Formulation Buffer at 37°C

- Large decreases in CDC, ADCC and FcγRIIIa binding (>50%)
- Small increases in N-terminal cyclization, Asp isomerization and HC Asn389/394 deamidation (<5%)
- Large increases in HC Asn330 deamidation & acidic peaks by cIEF

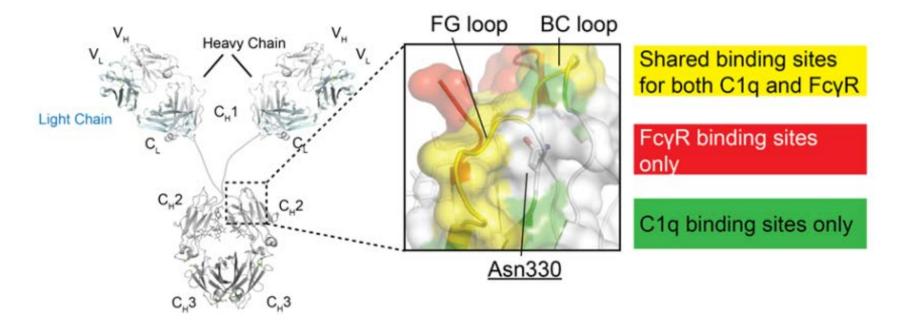
lansse

Unique pH Profile for HC Asn330 Deamidation Comparison of 3 IgG1 mAbs at 37°C



- Asn330 deamidation occurs very slowly in mild acidic buffer (6%/mon at 37°C)
- Asn330 deamidation **does not** occur at neutral or higher pH. Manufacturing process variation has little impact on Asn330 deamidation.

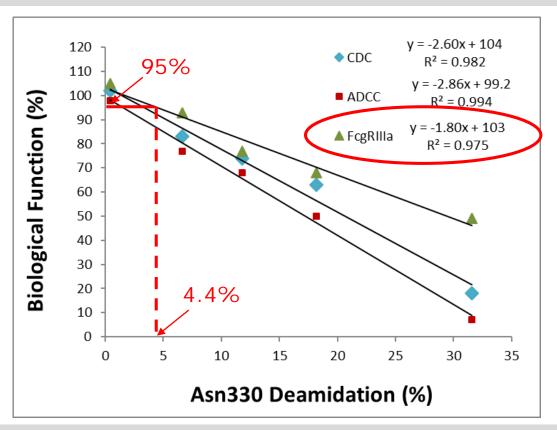
PHARMACEUTICAL COMPANIES


Unique pH Profile for HC Asn330 Deamidation Molecular Mechanism

- His sidechain imidazole ring has a pKa around 6.0.
- Below pH 6, protonation of His273 helps form salt bridge with Glu299, which increases the solvent accessibility of Asn330.
- Above pH 6, deprotonation of His273 breaks the salt bridge with Glu299 and reduces the solvent accessibility of Asn330.
- Below pH 3, deamidation occurs by acid hydrolysis at very slow rate

HC Asn330 Deamidation is a CQA Based on Structural Modeling and Bioassay Data

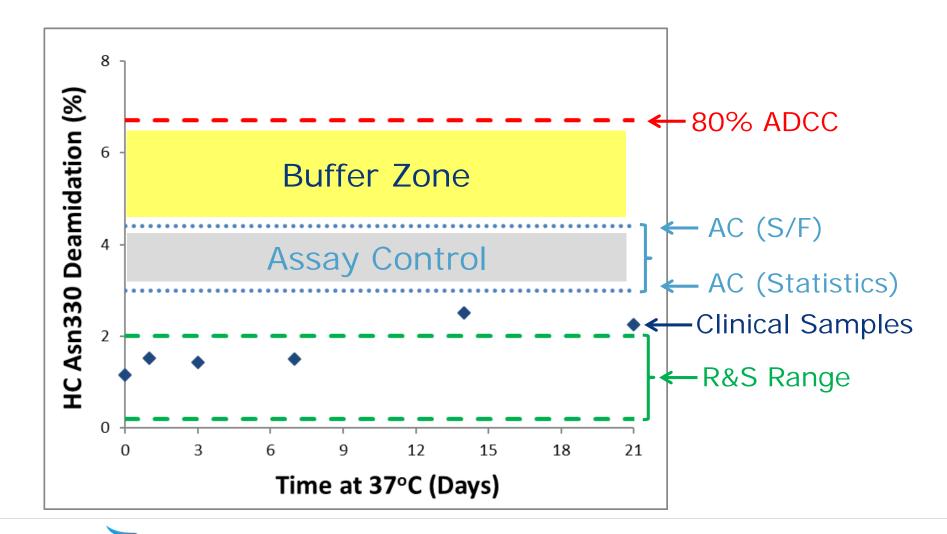
HC Asn330 sits near regions involved in $Fc\gamma RIIIa$ binding needed for ADCC activity and C1q binding needed for CDC activity


Asked to have analytical control even though deamidation rate on stability was very slow (0.4% / year at 5°C)

PHARMACEUTICAL COMPANIES of Johnson Johnson

Set "Clinically Relevant" AC Based on S/F Correlations 4.4% Asn330 Deamidation has 95% FcγRIIIa Binding

Asn330 deamidation correlates with loss of CDC, ADCC & FcyRIIIa binding

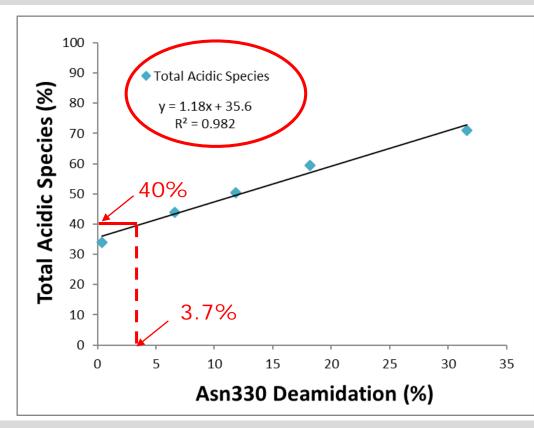


Limit: 95% Fc γ RIIIa binding correlates with 4.4% Asn330 deamidation Compared to \leq 3.0% from statistical analysis of mfg batches

Janssen

PHARMACEUTICAL COMPANIES of Johnson Johnson

HC Asn330 Deamidation is Still Well Controlled Based on Data from Heat Stress Study at pH 5.5



PHARMACEUTICAL COMPANIES

Janssen

Control of Asn330 Deamidation by cIEF Data from Heat Stress Study at pH 5.5

Asn330 Deamidation correlates with increase in acidic peaks by cIEF

Release / Stability Acceptance Criteria: 23-40% acidic peaks Limit: 40% Acidic Peaks correlates with 3.7% Asn330 deamidation

Janssen

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Increase in Acidic Peaks Due Primarily to Asn330 Deamidation & Unique to Heat Stress at pH 5.5

Attribute			ТО	1M at 37C	2M at 37	C 3M at 37C	6M at 37C
Peptide Map							
HC Glu 1 Cycli	HC Glu 1 Cyclization			1.7	2.4	3.2	5.2
HC Asp285 Isomerization			0.4	1.3	2.0	3.0	5.1
HC Asn320 Deamidation			6.9	6.9	7.2	6.9	7.4
HC Asn330 Deamidation			0.4	6.6	11.8	18.2	31.6
HC Asn389/394 Deamidation			8.8	9.8	10.4	11.0	12.7
HC Asn439 Deamidation			1.0	1.0	1.0	1.1	1.1
CIEF							
Main Peak			62.1	48.2	40.6	32.1	21.3
Acidic peaks		33.9	44.0	50.4	59.4	71.0	
Basic Peaks			3.9	7.8	9.0	8.5	7.7
Forced deg conditions	Glucose Stress	Peroxi Stres		Heat Stress 6M at		High pH Stress (8.5)	Low pH Stress (3.2)
Asn330	0.7	Stres				1 7	1 2

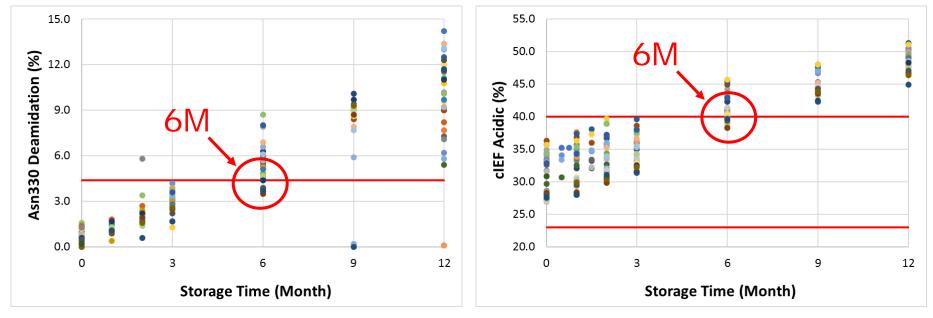
31.6

1.7

1.3

0.7

Deamidation

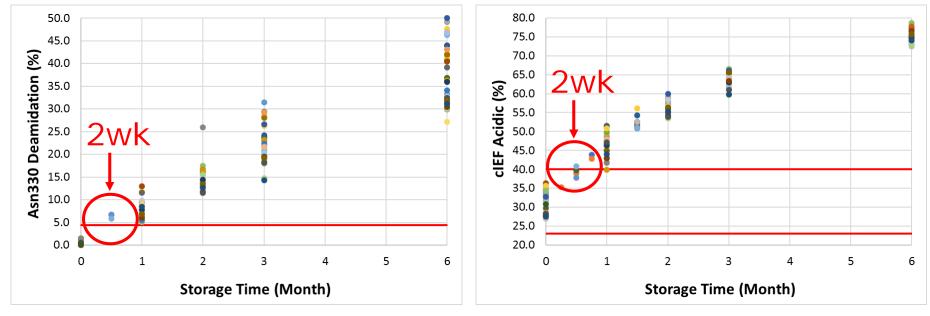

0.5

0.8

Control of HC Asn330 Deamidation AC for cIEF and Peptide Map are Equally Effective

Peptide Map Asn330 Deamidation

cIEF Total Acidic Peaks

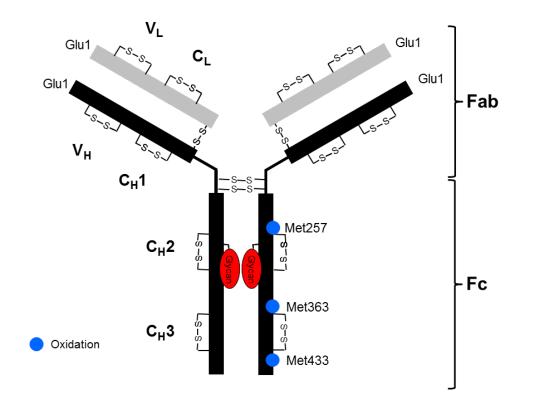

- 25°C Stability data for 36 DP batches (color coded)
- AC indicated by the red bars in the graphs
- AC for cIEF based on statistical analysis of batch results

PHARMACEUTICAL COMPANI OF Johnson Johnson

Control of HC Asn330 Deamidation AC for cIEF and Peptide Map are Equally Effective

Peptide Map Asn330 Deamidation

cIEF Total Acidic Peaks

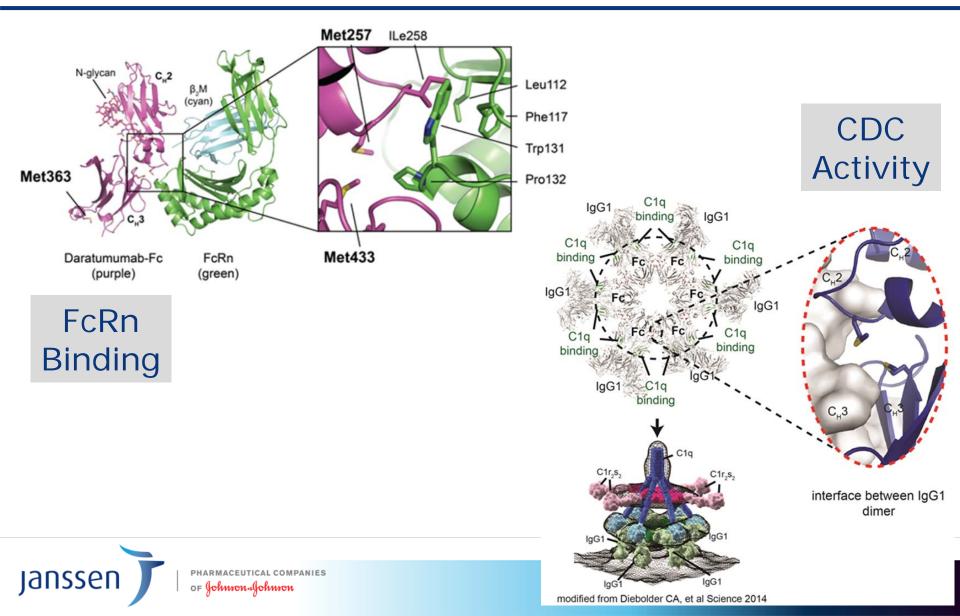


- 40°C Stability data for 36 DP batches (color coded)
- AC indicated by the red bars in the graphs
- AC for cIEF based on statistical analysis of batch results

PHARMACEUTICAL COMPANI OF Johnson Johnson

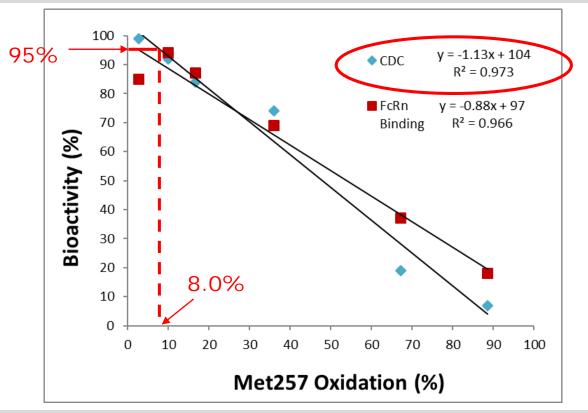
ISSEL

Methionine Oxidation is a Critical Deg Pathway Hydrogen Peroxide Stress Study



- Large decreases in CDC and FcRn binding (>50%)
- Large increases in Met oxidation (>80%), but no impact on Trp oxidation or other structural attributes

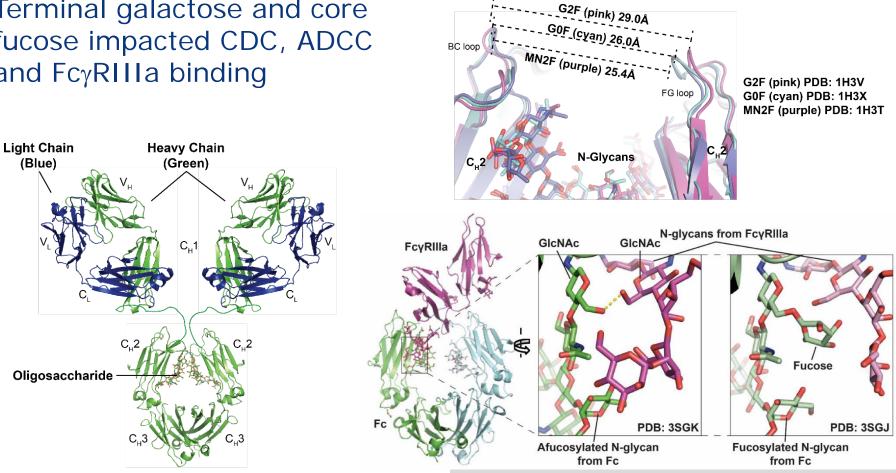
janssen 🎵 🛛


PHARMACEUTICAL COMPANIES OF Johnson Johnson

Only HC Met257 and Met 433 Oxidation are CQAs Based on Structural Modeling and Bioassay Data

Set "Clinically Relevant" AC Based on S/F Correlations 8.0% HC Met257 Oxidation has 95% CDC Activity

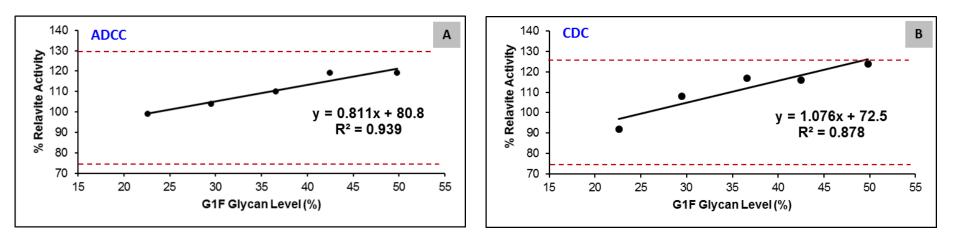
Limit: 95% CDC correlates with 8.0% Met257 oxidation Compared to ≤5.6% from statistical analysis of mfg batches


PHARMACEUTICAL COM OF Johnson - Johnson

Janssen

Glycosylation is a CQA Single Point, Glycoform Enrichment Studies

Krapp, S et al (2003) JMB 325:979-989



Ferrara C et al (2011) PNAS 108:12669-12674

PHARMACEUTICAL COMPANIES OF Johnson + Johnson

Janssen

Set "Clinically Relevant" AC Based on S/F Correlations **Results of G1F Spiking Study**

- Current AC for G1F is 15-27% based on statistical analysis of clinical batches
- mAb with up to 50% G1F met the AC for ADCC and CDC activity

	Activity (%)		
Acceptance Criteria	ADCC	CDC	5% increase in G1F
15- <mark>27</mark> %	93-103	89-102	=4% increase in ADCC
15- <mark>32</mark> %	93-107	89-107	=5% increase in CDC
	eutical companies		

- Multi-point, forced degradation or glycoform enrichment studies provide a wealth of information
- Can clearly identify PTM CQAs (deamidation, oxidation and terminal galactose)
- Can set "clinically relevant" AC based on impact to function rather than statistical analysis of mfg batches
- Can develop robust analytical control strategies using acceptance criteria from multiple methods

THANKS!!

Analytical Development

Ping Hu **Qingrong Yan** Maggie Huang and Mike Tang Shelly Ji, Amy Chiasson, Fanrong Kong Sui-Po Zhang, Chi So, Tam Soden Izabela Sokolowska, Jingjie Mo Mehul Patel, Don Neblock and Gulnur Elove

