
ART HEWIG AND CHETAN GOUDAR

PROCESS DEVELOPMENT, AMGEN, THOUSAND OAKS, CA WCBP, WASHINGTON D.C., FEBRUARY 1ST 2018

Pioneering science delivers vital medicines™

BIOMANUFACTURING CHANGE HAS BEEN EVOLUTIONARY IN COMPARISON TO OTHER INDUSTRIES

1956 (first disk drive)
3.75MB storage capacity
Weighed >1 Ton and was delivered in cargo airplanes

2017 (Largest solid state disk drive)
60TB storage capacity (can store >50,000 2-hour movies)
Weighs <1 kg and ships free

A changing business landscape is requiring agility, flexibility, modularity, and dematerialization of biomanufacturing networks. Continuous manufacturing can help support this transformation.

THE CHANGING BIOPHARMACEUTICAL LANDSCAPE HAS COMPANIES RETHINKING HOW DRUGS SHOULD BE MANUFACTURED IN THE FUTURE

Changing Biopharmaceutical Landscape

Patient Focus

- Improve patient experience and differentiate products
- More targeted products

Flexible Drug Discovery & Development

- Maintain modality independence
- Biosimilar opportunities

Expanding Global Presence

- Establish operations in new markets
- Manage demand uncertainty
- Meet local SKU profile/requirements

Outcome


Product Heterogeneity

Greater Demand Uncertainty

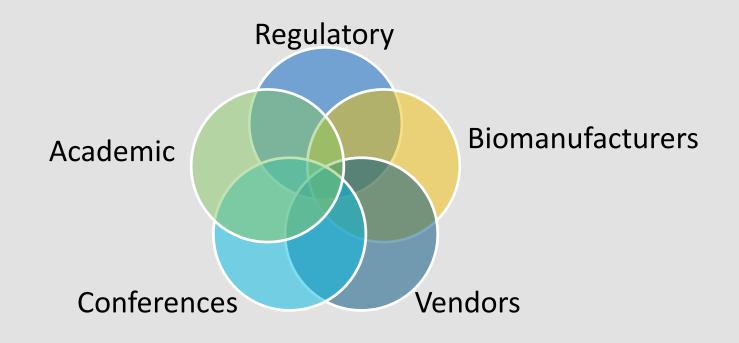
Lower Per Product Volume Balance use of existing footprint with addition of new capabilities to lower costs, and increase flexibility and speed

FED-BATCH CULTURE IN LARGE BIOREACTORS FOLLOWED BY BATCH PURIFICATION IS THE DOMINANT MANUFACTURING PARDIGM

A 15,000L fed-batch bioreactor with a final product concentration of 5 g/L \rightarrow 50 kg Drug Substance in 15 days

HISTORICAL VIEW OF CONTINUOUS PROCESSING IN BIOMANUFACTURING (FIRST GENERATION CONTINUOUS)

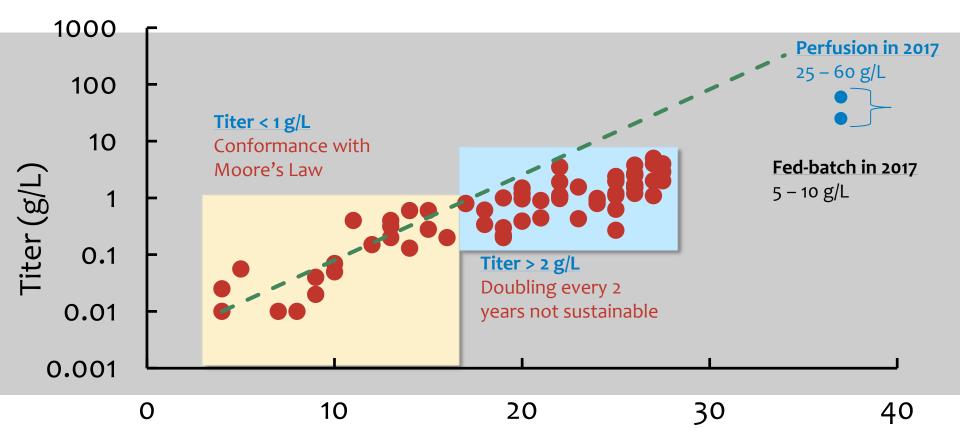
Application of continuous processing to biomanufacturing is not 'new' to our industry


- Historically has been used for unstable molecules such as blood factors and enzymes
 - Minimize residence time in bioreactor
 - Kogenate-FS approved in 1993, first product approved using continuous process
- Typical application of continuous processing has been a continuous perfusion cell culture process followed by batch purification

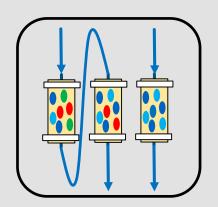
Year Approved	Tradename	Generic Description	Type of Biomolecule	Indication	Company
1993	Kogenate-FS	Factor VIII	Blood factor	Haemophilia A	Bayer
1994	Cerezyme	b-glucocerebrosidase	Enzyme	Gaucher's disease	Genzyme
1997	Benefix	Factor IX	Blood factor	Haemophilia A	Pfizer
1997	ReoPro	Abciximab	Antibody	Percutaneous coronary intervention angioplasty	Janssen
1997	Gonal-f	Follicle-stimulating hormone	Blood factor	Infertility	Merck
1998	Remicade	Infliximab	Antibody	Autoimmune diseases	Janssen
1998	Simulect	Basiliximab	Antibody	Organ transplantation	Novartis
1999	NovoSeven	Factor VIIa	Blood factor	Haemophilia A	Novo Nordi
2000	ReFacto	Factor VIII	Blood factor	Haemophilia A	Pfizer
2001	Campath/Lemtrada	Alemtuzumab	Antibody	Lymphoma and multiple sclerosis	Genzyme
2001	Xigris	Drotrecogin alfa	Blood factor	Sepsis	Eli Lilly
2002	Rebif	Interferon beta-1a	Blood factor	Multiple sclerosis	Merck
2003	Fabrazyme	Agalsidase beta	Enzyme	Fabry's disease	Genzyme
2003	Aldurazyme	Laronidase	Enzyme	Mucopolysaccharidosis I	Biomarin
2005	Naglazyme	Galsufase	Enzyme	Mucopolysaccharidosis VI	Biomarin
2006	Myozyme	Alglucosidase alfa	Enzyme	Pompe disease	Genzyme
2008	Xyntha	Factor VIII	Blood factor	Haemophilia A	Pfizer
2009	Simponi	Golimumab	Antibody	Autoimmune diseases	Janssen
2009	Stelara	Ustekinumab	Antibody	Psoriatic arthritis	Janssen
2010	VPRIV	Velaglucerase alfa	Enzyme	Gaucher's disease	Shire
2013	NovoEight	Factor VIII	Blood factor	Haemophilia A	Novo Nordi
2014	Vimizim	Elosufase alfa	Enzyme	Morquio syndrome	Biomarin

Le et al., (2015) CEP. Dec, 132 - 37

OVER THE LAST 5 TO 10 YEARS THE INTEREST, EFFORT, AND FOCUS ON CONTINUOUS BIOPROCESSING HAS SIGNIFICANTLY INCREASED

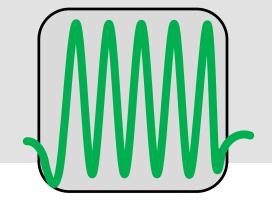


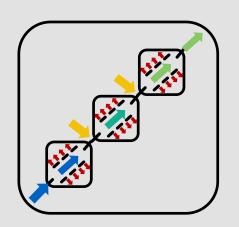
NEW TECHNOLOGIES ARE ENABLING NEXT GENERATION CONTINUOUS PROCESSING


Cell Line, Medium, and Cell Improved Cell Retention **Culture Process Improvements Next Generation Continuous Processing** Continuous Unit Operations in SUBs and Single Use Systems **Downstream Processing**

PRODUCTIVITY IMPROVEMENTS IN THE FED-BATCH PARADIGM HAVE PLATEAUED: PERFUSION CAN HELP MAINTAIN THE MOMENTUM

SIGNIFICANT ADVANCES ARE BEING MADE IN CONTINUOUS PURIFICATION THAT WILL FURTHER INTENSIFY PROCESSES AND DRIVE FOOTPRINT REDUCTION




Continuous Chromatography

PCC and Twin column

Continuous Viral Inactivation

 Inline continuous low pH hold

Continuous Formulation

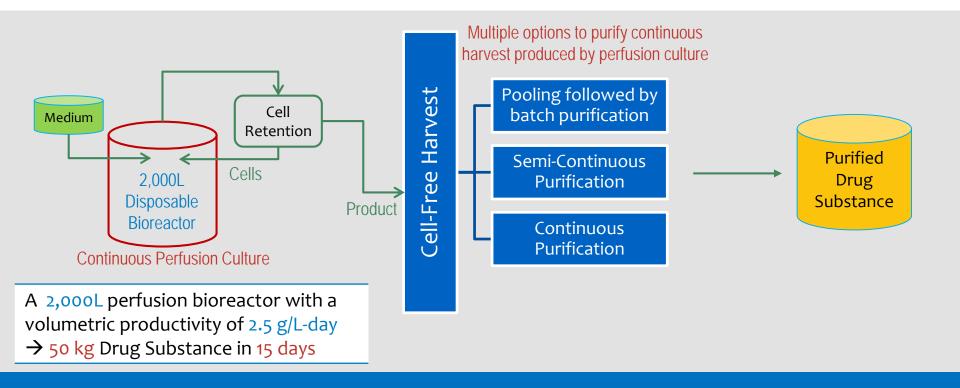
Inline continuous diafiltration

SINGLE USE SOLUTIONS ARE EXTENDING BEYOND THE BIOREACTOR, ENABLING FURTHER FOOTPRINT REDUCTION AND PROCESS SIMPLIFICATION

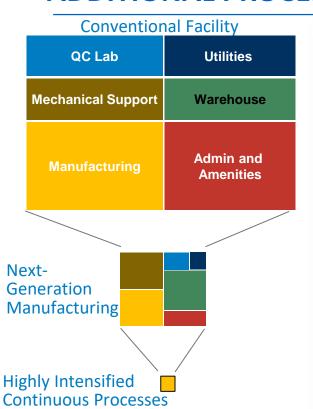
15 mL to 2000L single-use bioreactors Source: Sartorius

Single-use mixing systems Source: Millipore Sigma

Chromatography skids with single-use flow paths and pre-packed disposable columns Source: GE HealthCare and PALL



AMGEN SINGAPORE MANUFACTURING: NEXT-GENERATION FACILITY APPROVED FOR COMMERCIAL MANUFACTURING


This is version 1.0 of a flexible and intensified biomanufacturing platform

A HIGHLY PRODUCTIVE 2000L PERFUSION SYSTEM CAN ESSENTIALLY MATCH THE PRODUCTIVITY OF A 15,000L FED-BATCH BIOREACTOR

This presents an opportunity to update the biomanufacturing paradigm

THE NEXT EVOLUTION OF BIOMANUFACTURING WILL INVOLVE ADDITIONAL PROCESS INTENSIFICATION AND INTEGRATION

CONTINUOUS PROCESSING CAN HELP TO TRANSFORM THE CURRENT BIOMANUFACTURING PARADIGM

Reduction in CAPEX and Footprint

- Significant reduction in capital investment
- Miniaturization and intensification of process workflows
- Shift from fixed to variable cost structure

Flexible and Scalable Capacity

Targeted investment based on market demand/product mix

Lean Tech Transfers

- Scale out in place of scale up
- Development and training at development site

Reduction in Facility Time to Deploy

- Significant reduction in time to build
- Use of modular facilities

CONCLUSION: 'YOUR RESULTS MAY VARY'

Considerations

- Product portfolio
- Market demands
- Existing manufacturing network
- Manufacturing business model

Opportunities (Challenges)

- Balance of Labor and Automation
- Equipment integration
- Improved Single Use systems
- Control strategies / \$ for Analytical testing

THANK YOU

