Evaluation of Host cell proteins in Lenti Viral Vectors

Host cell proteins in Lenti Viral Vectors

- Host cell proteins (HCPs) are proteins produced/encoded by host organisms during the production of recombinant therapeutic proteins.
- HCPs in LVV are process related impurities generated during the manufacturing process from the transformed human embryonic kidney cells (HEK293T).
- Since residual HCPs have the potential to affect product quality, safety, and efficacy understanding the clearance of HCPs during the various stages of the product purification process is crucial.
- <1132> Residual Host Cell Protein Measurement in Biopharmaceuticals
 - Immuno Assays
 - Electrophoretic Methods
 - Western Blot Methods
 - Chromatographic and Proteomic Methods

Evaluation of Host cell proteins – Gold standard method

- Sandwich ELISA most commonly used method for monitoring HCPs
 - Assess the total amount of HCPs
 - Understand/track changes throughout the manufacturing process
 - Benefits: relatively easy to train/run, low cost, high throughput
 - Limitations: dependent on coverage of the Ab, ID of the proteins is not possible

HCP (ng/mL)						
Sample	Cell culture fluid	Nuclease Treatment	Harvested cell culture fluid	Eluate	Intermediate Bulk	Final Product (LVV)
Test Article-1	5,586	23,193	8,101	2,285	58,818	36,874

- Regulatory agencies prefer additional complementary information
 - Information on the antibody coverage
 - Coverage: % of HCP species an anti-HCP antibody detects out of the total HCP species present in a sample
 - Clearance study using orthogonal technologies
 - Surrogate host cell proteins can be spiked during DP Manufacturing to monitor clearance throughout the process

Evaluation of Host cell proteins - Orthogonal Techniques

- 2-D fluorescence differential gel electrophoresis (2D DIGE)
 - isoelectric focusing (IEF) to separate proteins according to their isoelectric point (pI) followed by SDS-PAGE to separate proteins according to molecular weight
 - Applications:
 - Process comparability (aLVV vs sLVV),
 - Clearance: comparing upstream to purified downstream samples
 - Evaluation of antibody coverage
 - Limitations:
 - Laborious, analyst variability during spot identification, low throughput
- LC-MS
 - powerful tool for analysis of HCPs during process development due to its sensitivity, selectivity and adaptability.
 - Useful for evaluation of antibody coverage information.
 - Enrichment of HCP's via immunoaffinity is typically performed
 - Limitations:
 - detection of low abundance proteins
 - Requires subject matter experts (SME's) for analysis
 - Expensive for routine testing (unless the analysis is performed in-house)

optional picking of spots and protein identification with mass spectrometry

Figure Downloaded from https://royalsocietypublishing.org/ on 05 November 2021

Evaluation of Host cell proteins -Capillary Electrophoresis

- Analysis:
 - Sample, separation matrix, stacking matrix, antibodies and reagents are loaded
 - Voltage is applied to enable separation by molecular weight
 - UV light immobilizes the proteins to the capillary wall
 - Immunoprobed with primary, followed by secondary HRP conjugate and detected by Chemiluminescence

CHEMILUMINESCENT DETECTION

Evaluation of Host cell proteins -Capillary Electrophoresis

Utilizes sub-millimeter glass capillaries and applied electric potential to separate proteins according to size

• Applications:

٠

- Characterization tool to evaluate
 - Total protein profile, Specific protein profiles
 - Qualitative and Quantitative
 - clearance of proteins

Evaluation of Host cell proteins -Capillary Electrophoresis

Clearance of E1A

• E1A and SV40 (surrogate protein markers) known to be HEK293T-specific were tracked during spiking experiments in small scale transductions to evaluate clearance across the various wash steps

Clearance of SV40

Tested range: 9.375 – 1500 ng/mL

Sample	Measured Concentration (ng/mL)	log Clearance	
High Spike Mock Sample	165.7	N/A	
High Spike Wash 1	12.32	0.1994	
High Spike Wash 2			
High Spike Wash 3	<loq (9.375)<="" td=""><td>>0.3178</td></loq>	>0.3178	
High Spike Wash 4			
Low Spike Mock Sample	46.11		
Low Spike Wash 1		N/A	
Low Spike Wash 2			
Low Spike Wash 3	<loq (9.375)<="" td=""></loq>		
Low Spike Wash 4			
No Spike Mock Sample	16.62	N/A	
No Spike Wash 1			
No Spike Wash 2	<loq (9.375)<="" td=""></loq>		
No Spike Wash 3			

Questions

• Thank you!

recode for life