Quality by Design for mRNA Products

Julia O'Neill, Direxa Consulting Symposium on mRNA Therapy Products Gaithersburg, MD May 29, 2025

Outline

The challenges faced by developers & reviewers

Science and Quality by Design to the rescue

Translating to practice

Challenge #1:

New modalities are <u>new</u>.

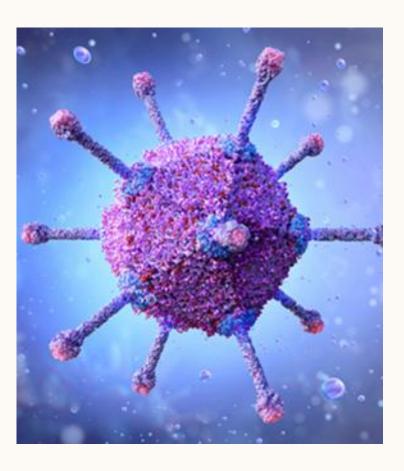
3

Challenge #2: Acceleration

1966 – 2016 ASU Foundation Professor Connie Borror ASQ Shewhart Medal 2016

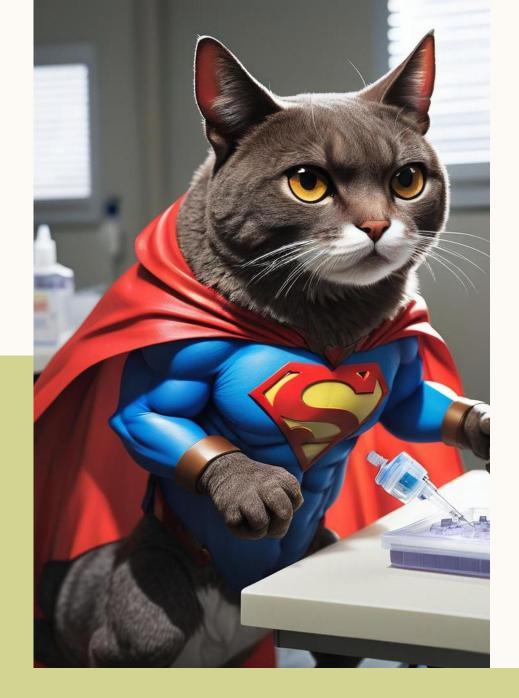
Challenge #3: Traditional Reliance on Quality by Inspection

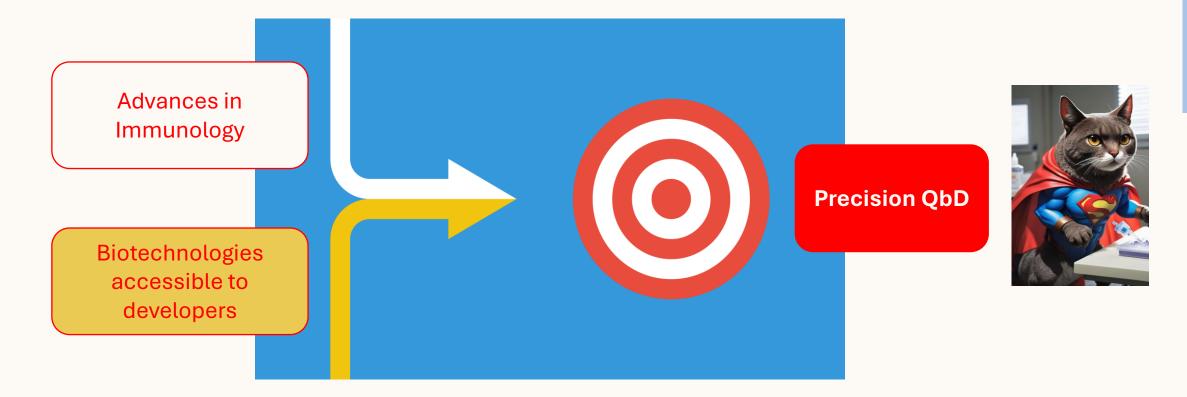
Complex "large molecule" biological products were considered too difficult to fully characterize.


"A fixed process equals a fixed product."

DIRE

Challenge #4: Analytical Characterization Can Be Complex

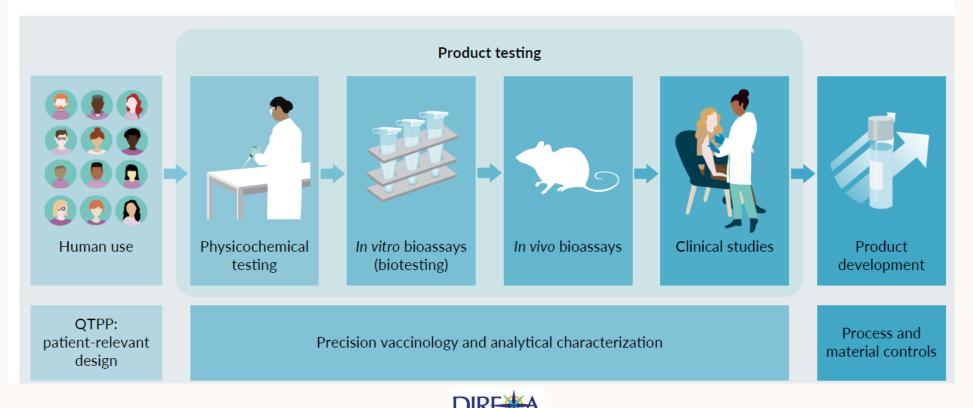



Summary of Challenges Faced By Developers & Reviewers

- New modalities are NEW
- Urgency
- Traditional reliance on Quality by Inspection
- Complexity of assays

Science (and Precision QbD) to the Rescue

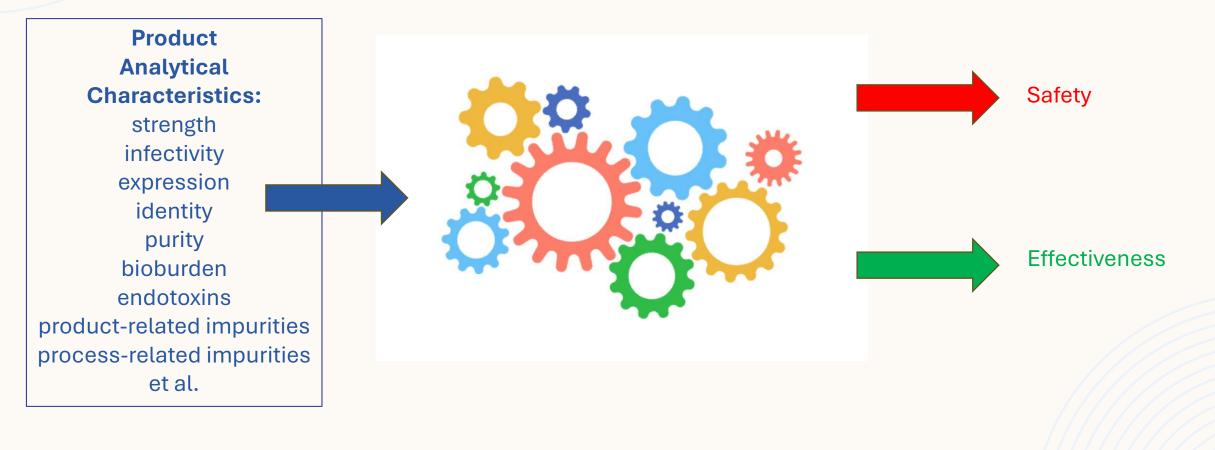
Precision QbD Helps Us Overcome These Challenges.



Quality by Design Begins with the Patient.

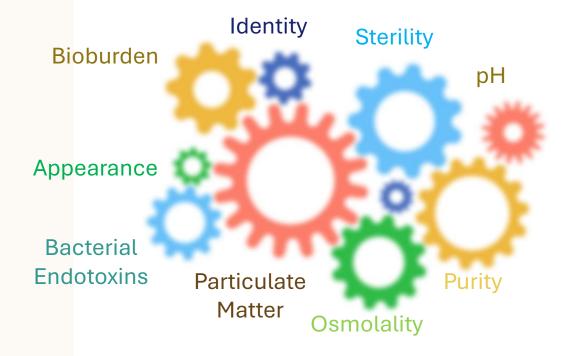
Vaccine Insights; DOI: 10.18609/vac.2024.023

QbD begins with patient needs, reversing the design process relative to the traditional QbI paradigm.


Vaccine Critical Quality Attributes

SPECIFICATION OF DRUG SUBSTANCES AND PRODUCTS DEVELOPMENT AND VALIDATION OF ANALYTICAL METHODS THIRD EDITION

Typical Vaccine Critical Quality Attributes and Expected Relevance			
Safety	Efficacy	Compendial	
Identity	Identity		
Appearance	Activity	рН	
Particulate matter	Immunogenicity	Osmolality	
Bacterial Endotoxins	Container Content, Deliverable Volume		
Sterility	Content		
Purity	*** Potency ***		
Process-related Impurities			
Product-related Impurities			


Claim: Analytical Characterization Can Predict Both Safety & Effectiveness.

Traditional Test Panel "Predicts" Safety, But Our View Was Blurred.

DIRE

injection site reactions: tenderness, swelling of the lymph nodes, swelling (hardness), and redness

general side effects: fatigue, headache, muscle pain, joint pain, chills, nausea and vomiting, fever, and rash

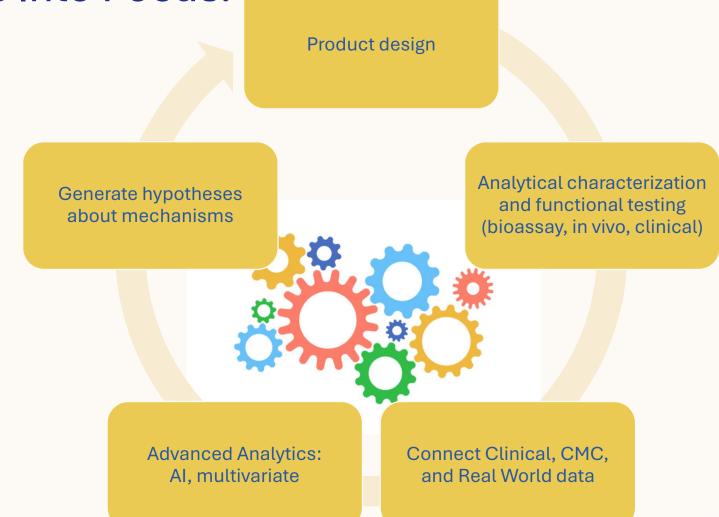
> myocarditis, pericarditis

severe allergic reaction

Learnings from Safety Risk Monitoring for Vaccines Administered To Very Large Groups


Stage	Example Group Size	Expected Myocarditis Events		
		Unvaccinated	Vaccinated	Infected
Rate of Mycarditis per Million		6	22	103
Phase 1	100	0.00	0.00	0.01
Phase 2	500	0.00	0.01	0.05
Phase 3	3,000	0.02	0.07	0.31
Phase 2/3 (COVID)	21,720	0.14	0.49	2.25
In Use (one billion)	1,000,000,000	6,391	22,369	103,424

Example for illustration: Myocarditis rates in Israel, BNT162b2 vaccine. NEJM 2021


Predicting Effectiveness Has Other Challenges.

Precision QbD: predict effectiveness based on biological knowledge of mechanism of action



Correlates to effectiveness?	Via mechanism of action	"Functional tests", empirical correlation			Ultimate measure. Gold standard.	
Represents diversity in recipients?	Independent of recipients	Designed for homogeneity but inherently variable	Constrained diversity (by design)	Limited diversity of subj	ects, regions, timeframe	Tremendous diversity in subjects, regional, seasonal, long-term
Information quality	High: precise, accurate, informative	Limited: relative measures, different scale	Medium: continuous m	easures, different scale	Low: discrete metrics, yes/no or time-to-event	Very low: metrics dependent on monitoring systems, clouded by confounding factors

Precision QbD and Advanced Analytics Bring Mechanisms Into Focus.

What really matters to patients and health care practitioners?

How Science and QbD Enable mRNA Therapies

- Advances in immunology, biotechnologies, and advanced analytics prepare us to predict safety and effectiveness from product characterization
- The dimensions of quality important to patients and health care providers are very similar for vaccines and therapies – the weighting is different

Translating to Practice

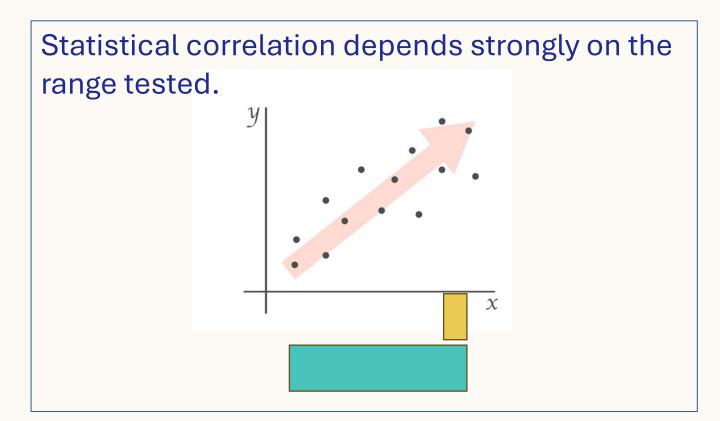
19

Specifications for Individualised mRNA cancer immunotherapies MHRA Draft Guideline published 3 February 2025

741	4.2.7. Release testing and potency			
742	The specifications define the active substance regardless of variation in the starting			
743	material. Wherever possible, the active substance, and final product should be			
744	subject to release testing. It may be acceptable to omit release testing for the drug			
745	substance if justified and authorised, but exhaustive control is expected at the drug			
746	product level. Some release testing might not be possible on the formulated drug			
747	product for technical reasons, so testing at the drug substance level will be required.			
748				
749	A typical set of mRNA drug substance tests could include appearance, particulates,			
750	pH, endotoxin, bioburden, entire nucleotide sequence, RNA concentration, capping			
751	efficiency, poly(A) tail, mRNA integrity, mRNA purity, residuals (which may be			
752	template, enzymes, solvents, and nucleotides), and the functionality of the desirable			
753	mRNA drug substance (e.g. protein expression). Where applicable, pharmacopoeial			
754	limits should be adopted. This is not an exhaustive or prescriptive list, but it will			

Vaccine Therapeutic Critical Quality Attributes

Typical Vaccine Critical Quality Attributes and Expected Relevance			
Safety	Efficacy	Compendial	
Identity	Identity		
Appearance	Activity	рН	
Particulate matter	Immunogenicity	Osmolality	
Bacterial Endotoxins	Container Content, Deliverable Volume		
Sterility	Content		
Purity	*** Potency ***		
Process-related Impurities			
Product-related Impurities			


Potency for Individualised mRNA cancer immunotherapies MHRA Draft Guideline published 3 February 2025

- Potency is the quantitative measure of biological activity based on the attribute of the product linked to the relevant biological properties.
- The potency assay should be based on the intended biological effect and ideally related to the clinical response. This is expected to be a challenge for individualised mRNA neoantigen immunotherapies.
- It is possible to justify the use of a potency assay that measures a product attribute that has been demonstrated to correlate with the intended biological effect. An analytical method that measures a correlate – such as protein expression - is considered a functionality assay rather than a true potency assay. The use of physicochemical measures, as a functionality test, in place of a cell-based expression assay need to be substantiated with adequate data to support biological correlation.

Empirical Correlation Has Limitations.

It may be necessary to correlate a moreprecise result (analytical characterization panel) to a lessprecise result (bioassay, in vivo, or clinical).

Potency can be confirmed by a suite of precise analytical characterization assays, confirmed by a cell-based potency assay.

Specification

The active substance specifications contain tests for: Appearance (visual), Identity RT- Sanger Sequencing), Total RNA content (UV), Purity (RP-HPLC), Product-related impurities (RP-HPLC), % 5' Capped (RP-UPLC), % PolyA tailed RNA (RP-HPLC), Residual DNA template (qPCR), pH (pharmacopoeial), Bacterial endotoxin (pharmacopoeial), Bioburden (pharmacopoeial).

11 March 2021 EMA/15689/2021 Corr.1*¹ Committee for Medicinal Products for Human Use (CHMP)

Assessment report

COVID-19 Vaccine Moderna

Common name: COVID-19 mRNA Vaccine (nuc

Procedure No. EMEA/H/C/005791/0000

Summary

Precision QbD overcomes traditional challenges in development and enables patient-relevant design and acceleration.

Predicting effectiveness based on analytical characterization has the potential to deliver greater insight than cell-based Potency assays.

Precision Quality by Design delivers safety, efficacy, AND access.

Call To Action

Accelerate development and expand access by adopting patient-relevant design, enabled by precision QbD.

Mine the depths of connected Clinical-CMC-real world data using AI, machine learning, and advanced multivariate data analysis.

Put the Potency assay in its (proper) place.

Thank You!

Julia O'Neill Julia@DirexaConsulting.com 27