

Development of mRNA-LNP manufacturing process platform *LNP formation unit operation*

Sumit Luthra

CMC Drug Product Development, mRNA CoE, Sanofi, Waltham, MA

Hourdel et al International Journal of Pharmaceutics, 672, 2025

Introduction and Overview

Historical Development

- •From "magic bullets" concept to modern delivery systems
- •mRNA discovery (1961) to successful LNP encapsulation (1970s)
- •First commercial LNP-mRNA vaccines: 2020 (COVID-19)

Key Topics

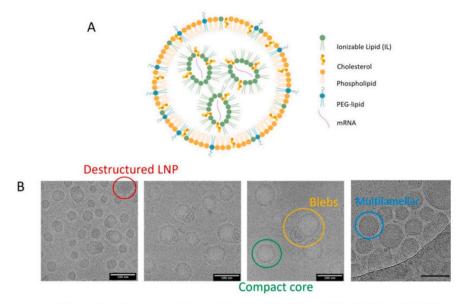
•LNP Structure and Size Considerations
•Nanoprecipitation Process
•Manufacturing Methods
•Mixing Technologies
•Formulation & Process Parameters
•Scale-up Challenges

LNP Structure and Size Considerations

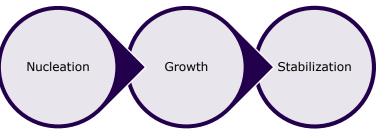
Composition: Four key lipid components

- •Ionizable lipid (IL): mRNA binding, endosomal escape
- •Phospholipid: structural integrity, membrane fluidity
- Cholesterol: membrane stability, fusionPEGylated lipid: size control, steric barrier

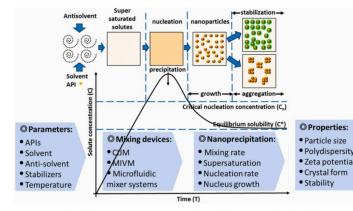
Structures


•Multilamellar

- •Dense core (most common)
- •Bleb structure


Size : Importance & Dependent Effects

Must be reasonably small for sterilizing filtrationAffects biodistribution and immune response


<10 nm: rapid elimination
20-50 nm: direct lymph node targeting
>150-200 nm: trapped at injection site
85-100 nm: optimal immune activity

Nanoprecipitation Process & Influencing Factors

- •Nucleation: Lipids reach supersaturation and form solid nuclei
- •Growth: Condensation and coagulation of lipids around nuclei
- •**Stabilization:** Through PEGylated lipids and electrostatic repulsion

•Mixing time: Faster mixing -> smaller LNPs •Aqueous phase fraction: Higher fraction -> higher supersaturation -> smaller LNPs

•**Temperature:** Higher temperature ? higher lipid solubility -> larger LNPs

•Solvent-antisolvent miscibility: Must be miscible for effective nucleation

•mRNA electrostatic interactions: Negative charge facilitates association with ionizable lipids

Manufacturing Methods Comparison

Batch Processes

- •Thin lipidic film evaporation
- •Organic phase injection
- •Reverse phase evaporation
- •Emulsion-diffusion
- •Limitations:
 - Poor reproducibility
 - Scale-up challenges
 - Low encapsulation efficiency (30-40%)

Continuous Processes

Microfluidic processes (lab scale)Large-scale mixers (industrial scale)

•Advantages:

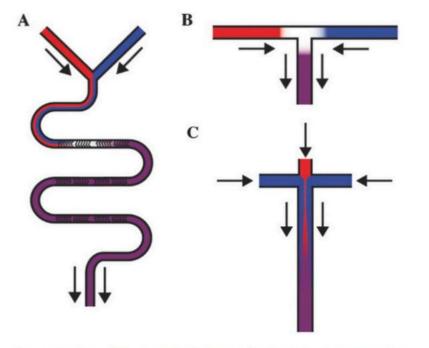
- Better control of parameters
- Improved scalability
- Higher encapsulation efficiency
- Monodisperse nanoparticles

Mixing Technologies: From Micro to Large Scale

Parameter	Microfluidic Mixers	Large-Scale Mixers	
Common types	Staggered Herringbone, Hydro Flow Focusing, T- mixers	T-shaped, Static, Chaotic mixers	
Flow regime	Laminar (Re < 2000)	Laminar or turbulent	
Mixing mechanism	Diffusion at liquid- liquid interface	Convection, turbulent mixing	
Scale	Lab/small batches	Clinical/industrial	
Scalability	Limited	Good	

Fluid Mixing Characterization & Optimization

Characterization Methods


•Experimental:

- Passive tracers (dyes, fluorophores)
- Particle Image Velocimetry (PIV)
- Laser-Induced Fluorescence (LIF)
- •Numerical:
 - Computational Fluid Dynamics (CFD)
 - Mixing index calculations

Geometric Optimization

•Critical features:

- Mixing chamber design
- Shape of downstream part
- Inclination angle of inlet flows

Fig. 3. Schematic representation of most used micromixers: (A) SHM, (B) T mixer, (C) HFF. The red phase corresponds to the organic phase and the blue phase corresponds to the aqueous one (Evers et al., 2018).

Formulation Parameters

Organic Phase

sanofi

- Ionizable lipid concentration (N/P ratio)
 - Controls encapsulation rate
 - Critical for mRNA binding
- •Organic solvent type and fraction
 - Must be \geq 80% for efficient nanoprecipitation
 - Different solvents affect particle size

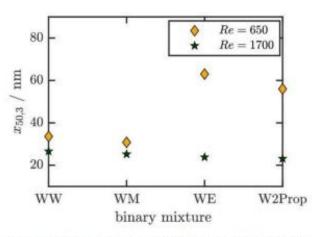


Fig. 7. Evolution of the simulated mean particle size as a function of the solvent nature at two Reynolds numbers (Schikarski et al., 2023).

Aqueous Phase

•pH effects

- Lower pH \rightarrow higher encapsulation efficiency
- Higher pH \rightarrow increased LNP size

•Buffer type

- Affects cell activity and LNP properties
- Citrate buffer: larger LNPs but better mRNA protection

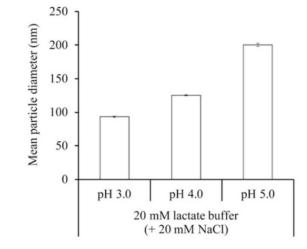


Fig. 8. Impact of the pH of the aqueous phase on the LNP size (Nakamura et al., 2022).

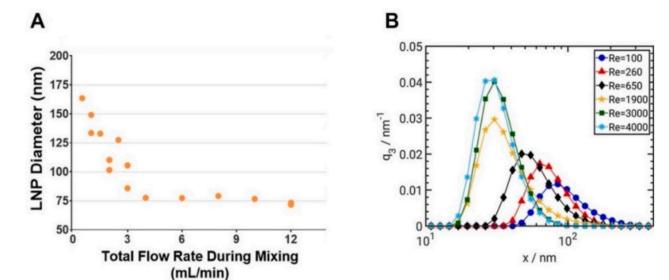
Process Parameters & Scale-up Challenges

Flow Rate Effects

•Higher flow rate \rightarrow lower mixing time \rightarrow smaller LNPs

•Reynolds number determines mixing regime

•Transition to turbulent flow (Re \approx 1900) reduces polydispersity


•Size plateau reached at turbulent transition

Scale-up Challenges

•Maintaining consistent mixing quality

- •Different mass transfer between scales
- •Hydrodynamic control at larger scales

•High throughput while maintaining quality

sanofi

Fig. 15. (A) LNP size evolution as a function of the total flow rate (Hassett et al., 2021), (B) LNP size distribution evolution as a function of the Reynolds number (q₃ is the mass-weighted density) (Schikarski et al., 2019).

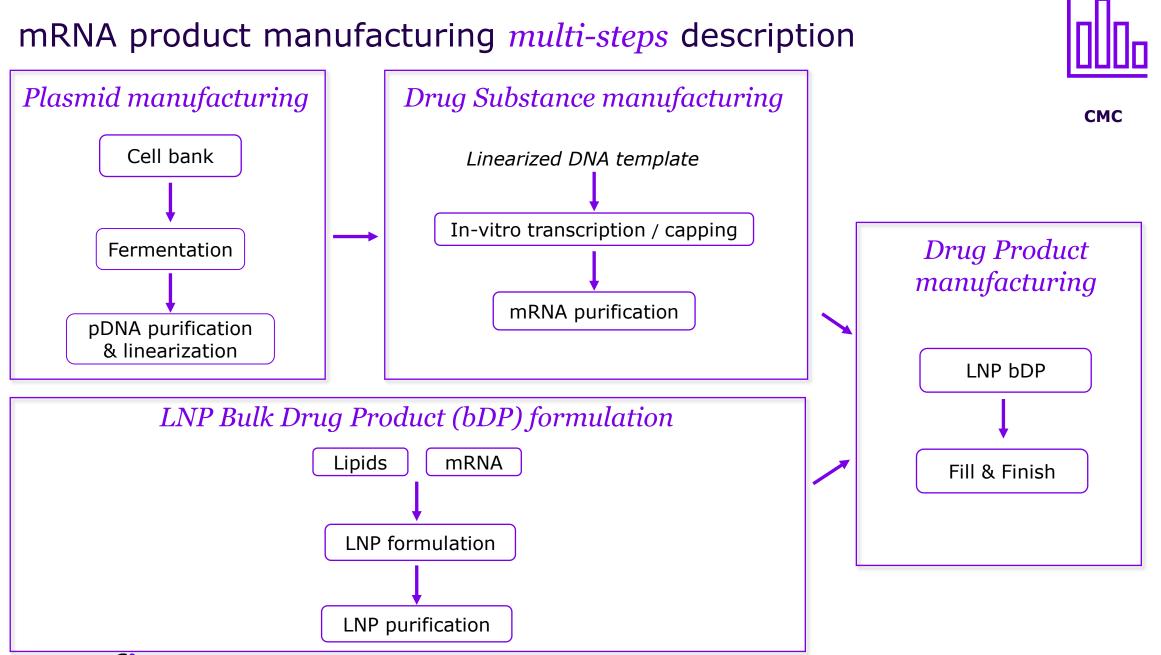
Systematic Optimization & Conclusion

Formulation parameters

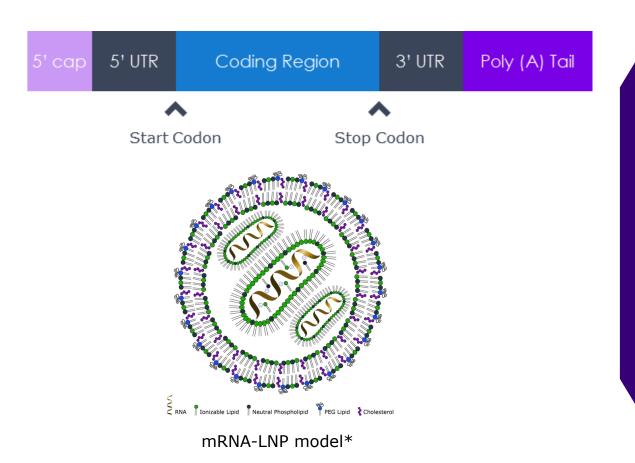
- •Optimize lipid composition
- •Tune N/P ratio
- •Select appropriate buffer and pH
- •Determine optimal phase ratio

Process parameters

- Design mixing geometrySet appropriate flow ratesControl temperature
- •Establish scale-up strategy


Questions?

Sumit.Luthra@sanofi.com

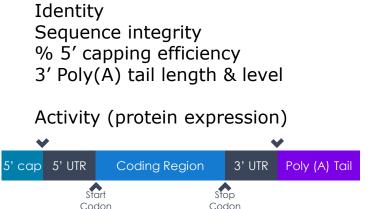


Sumit Luthra is a Sanofi Employee and may hold shares and/or stock options in the company

Back-ups (Previously disclosed slides)

*Daniel et al, TIBTEC 2022

- Influenza
- Respiratory syncytial virus
- Chlamydia
- Additional infectious diseases targets
-and therapeutics

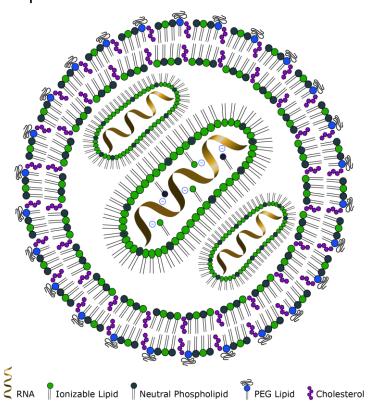

mRNA-LNP platform need to evolve to address diverse 💉 therapeutic area needs

•	1 st gen mRNA	2 nd gen mRNA	3 rd gen mRNA
Immunogenicity	V High	🗸 High	🗸 High
Reactogenicity	Moderate to high	Tolerability profile in line with established vaccines	Tolerability profile in line with established vaccines
Thermostability	• ~ 1 month shelf life (2-8°C)	Lyophilized or 9 – 12 months fully liquid	Lyophilized or 9 – 12 months fully liquid
Duration of expression	9 1 – 3 days	🛑 1 – 3 days	Extended half-life
Targeting	θ-	e -	Efficient cell & organ specificity
sanofi	Applicable to pandemic market	Required profile for general vaccine markets	Optimal profile for therapeutics
			14

mRNA/LNP specific *Quality Attributes* linked to composition and $^{\textcircled{O}}$ function in *CMC platform* development

Lipids components

- Identity
- Total and individual Content
- Impurities



mRNA impurities

mRNA:

mRNA related substances (*untailed, dsRNA, abortive transcripts, fragments, aggregates..*)

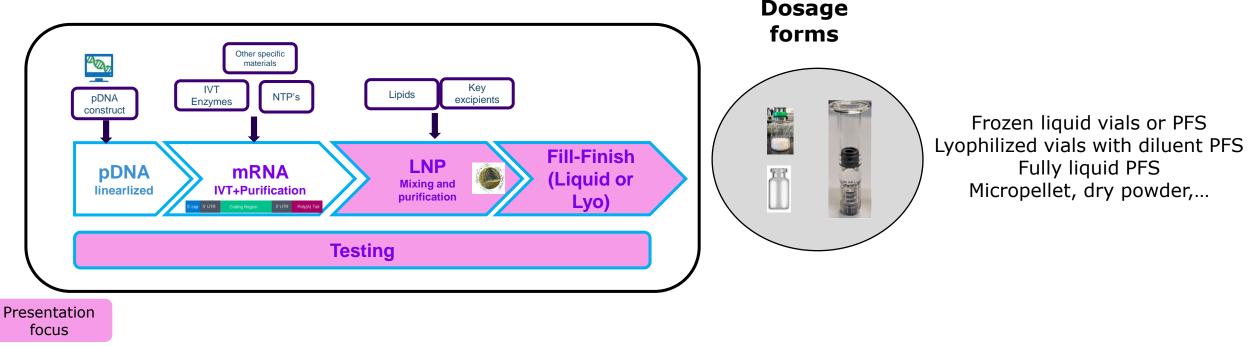
Process related impurities (pDNA, enzymes, NTPs,..)

Lipid Nano Particles:

- Size & distribution
- Surface charge
- Morphology
- % mRNA encapsulated
- Total mRNA content
- Individual mRNA content (multivalent)

LNP impurities

- mRNA-lipid adduct
- Lipid degradants
- Process related impurities (Ethanol, RNAse..)


Activity:

Protein expression (individual)

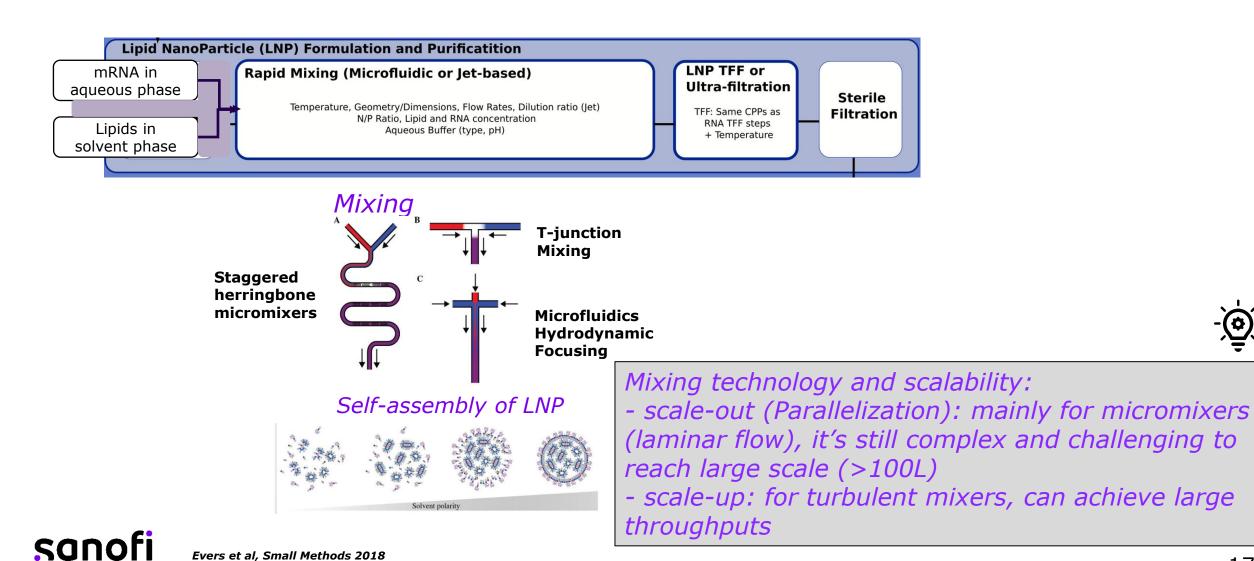
USP Draft Guidelines available- Analytical Procedures for mRNA Vaccine Quality

E2E Manufacturing Process & *dosage forms* considerations early in *CMC platform* development

LNP, Fill-finish and DP

♦←੦

Ó→Π


- LNP thermostability brings time/temperature constraints for well established fill-finish processes

- Drug device combination product requirement based on vaccine image to be incorporated early in development

< ↓ ○→□

Manufacturing process of LNP

Daniel et al, TIBTEC 2022

LNP specificity implications to process

LNP feature choices

- •Lipid choice (cationic, helper,..)
- •Lipid impurities
- •Lipids molar ratio
- •N/P ratio (lipid to mRNA)
- •Number of mRNAs in LNP
- •Thermostability requirement

Process implications

- •Lipid solution composition
- •mRNA solution composition
- Mixing technology- scale out vs scale up
- Input Concentrations
- •Total flow rate and ratio
- Careful control of LNP microenvironment during purificationFilterability
- •F/T conditions
- •Turbulent and laminar stress post-LNP formation
- •Careful control of freeze-drying parameters
- •Short mfg time to limit temp exposure
- •Compatibility with manufacturing equipment and primary container

Attributes control

•Size and polydispersity

- Morphology
- •Encapsulation efficiency
- •Lipid content (total and individual)
- •mRNA content (total and individual)
- •mRNA integrity
- Aggregation
- •mRNA-Lipid adduct
- •Protein expression (activity)

Formulation and process design should address these challenges following QbD approach, considering

sanofi

- Prior knowledge from mRNA-LNP platform, technical studies and process modelling tools

- Product specificities: mRNA loading and multivalency, Lipid changes, LNP design

♦←०