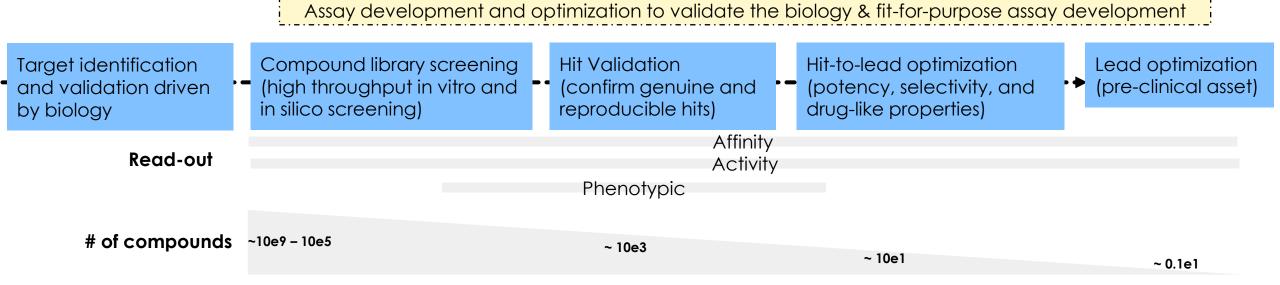
# Applications of Mass Spectrometry in Biopharmaceutical Discovery: From Small Molecules to Proteins

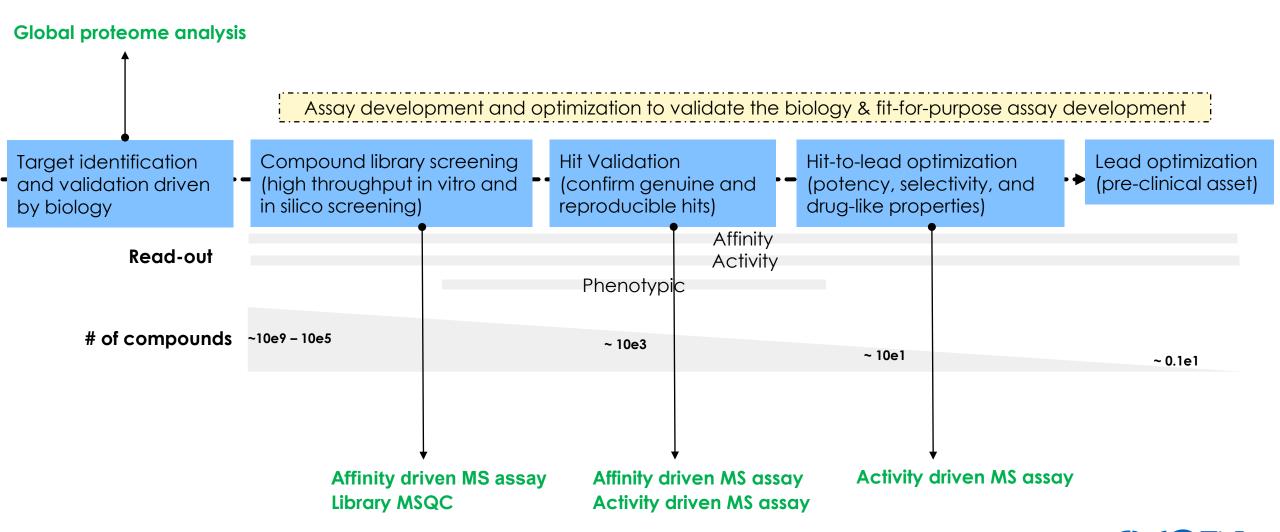
Aniruddha Sahasrabuddhe, Ph.D.
Principal Scientist
CRADI-MA
Amgen Inc.
asahasra@amgen.com

Symposium on the Practical Applications of


Mass Spectrometry

in the Biotechnology Industry

SEPTEMBER 23-26 Costa Mesa, CA




# Small molecule discovery funnel





# Small molecule discovery funnel

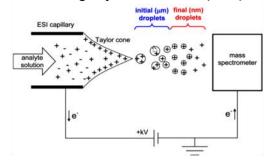




# How do we achieve screening large sample space by MS?

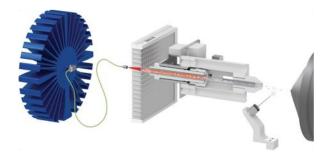
## **High Throughput Mass Spectrometry**

#### Rapidfire 360 – QTOF 6530




#### LDTD connected to 5600+ Triple TOF



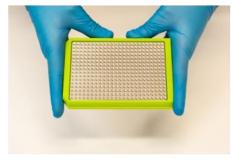

LDTD; Laser diode thermal desorption

#### Electrospray ionization (ESI)



- · Ionizes small molecules and large molecules
- · Relatively high background
- High solvent consumption

# Atmospheric Pressure Chemical ionization (APCI) LDTD source

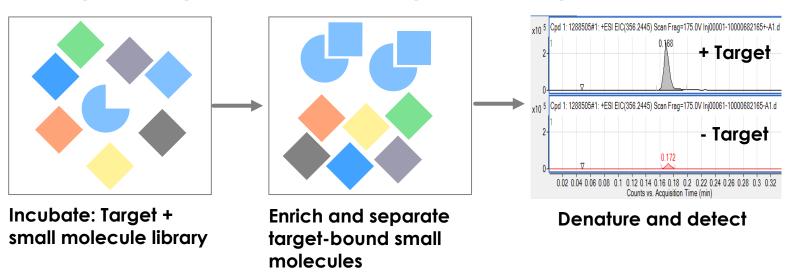



- Ionizes small molecules
- Relatively less background
- Low or no solvent consumption

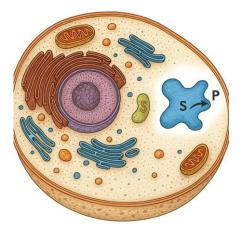
# Solid-phase extraction (SPE) Aspirate Sample Under Constant Vacuum Wash Aqueous Organic SPE Cartridge SPE Cartridge SPE Cartridge SPE Cartridge

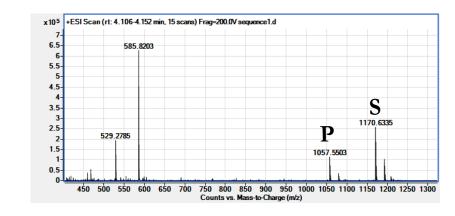
- 8-15 sec/sample;  $35-50 \,\mu\text{L/sample}$ ;  $\sim 60-80 \,\text{min}/384$ -well plate
- Multiple SPE cartridges (C4, C8, C18, Cyano, HILIC, etc.)
- Supports 96- and 384-well plate formats

#### Offline sample dilution in % organic and stamp on DEC plate

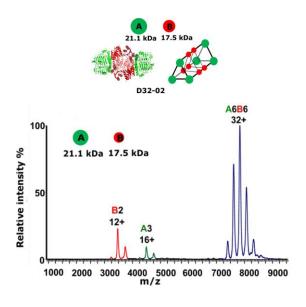


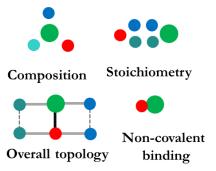

- 3-10 sec/sample; 2-5  $\mu$ L/sample; ~ 40-60 min/384-well plate
- Require offline sample dilution in % organic (e.g., 75% MeOH)
- Supports 384-well plate format





# Case studies of MS in early drug discovery

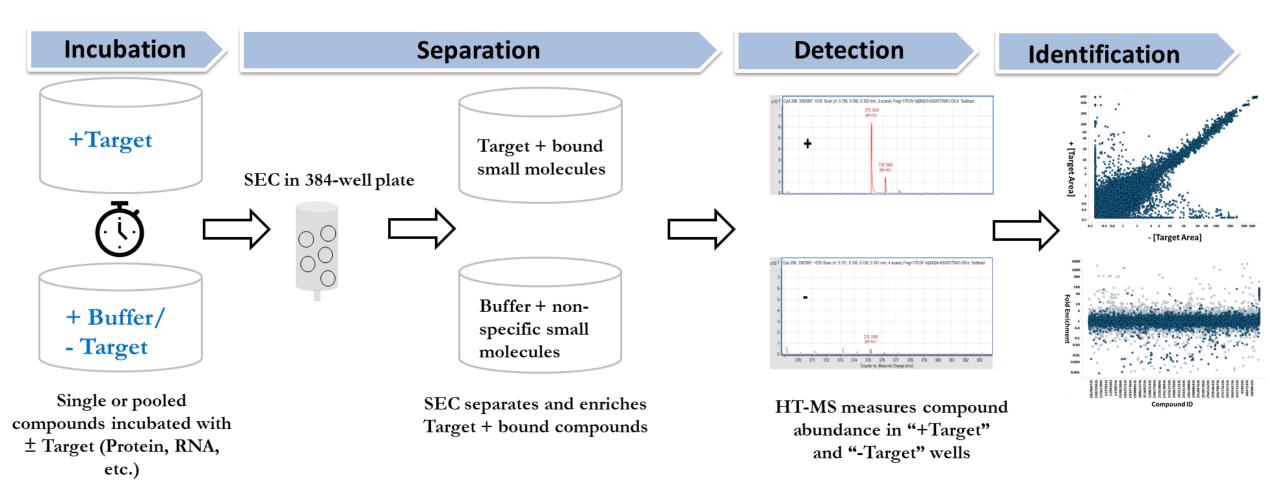
## **Affinity: Affinity selection Mass spectrometry**





## Activity: Cellular enzymatic MS assay






#### **Native MS**







# Affinity Selection Mass Spectrometry (ASMS) Outline



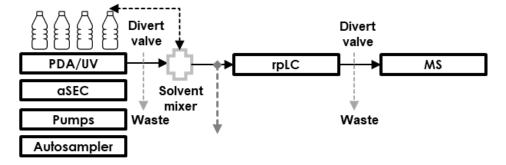


# Parameters to consider for successful implementation of ASMS

#### Molecular library and appropriate controls

#### 384-well format

212-pooled compounds per well at 47.2 μM


| Poo | Pooled compounds |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-----|------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | 1                | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| Α   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| В   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| С   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| D   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| E   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| F   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| G   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Н   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| I   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| J   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| K   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| L   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| M   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| N   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 0   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| P   |                  |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

x2 pooled compound plates per assay

- 1. + Target (or + Protein)
- 2. Target (or + buffer)

#### Target-binder enrichment

- Multi-well gel filtration plate to separate targetbound compound(s) from unbound free compounds.
- ☐ aSEC followed by RPLC-MS



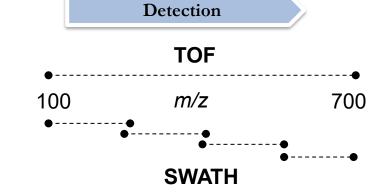


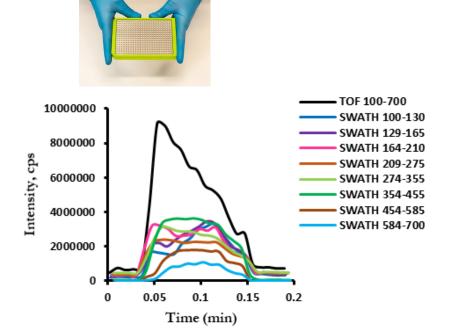
Controls

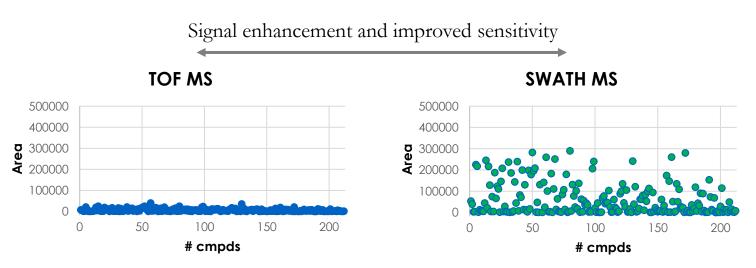
# Parameters to consider for successful implementation of ASMS

#### **Method optimization**

Sample preparation


**Optimized parameters:** 


- Sample diluent (75% MeOH)
- Sample loading or spotting
- Sample transfer automation (Bravo)


#### **Ionization**

Optimized parameters:

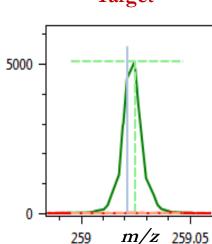
- Laser power
- Addition of start and end delay (0.5 sec)
- Developed 5 sec and 11 sec methods







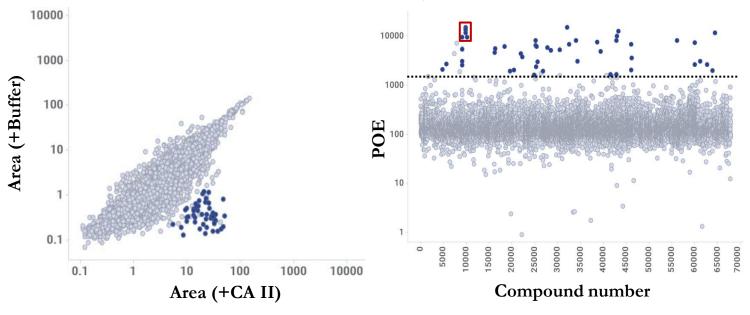



# Compound screening against a protein target carbonic anhydrase II

## Example of compound enrichment w/ CA II

6-ethoxy-1,3-benzothiazole-2-sulfonamide

#### **Positive Control**


+Target
-Target



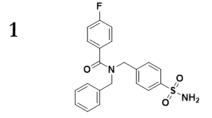
POE: Percent of Enrichment; SD: Standard deviation

## 60k+ compound library screening result

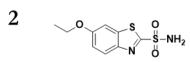
- **❖**Total compounds screened: 67,848
- **❖**Total hits: 59
- **❖**% hit: 0.07
- **❖Compound selection filter** (dotted line)
- ➤ Mass accuracy (+CA II): +/- 20 ppm
- ➤ POE: Mean+3xSD, 1594



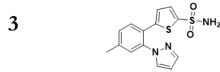



# **Summary**

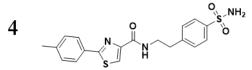
57/59 hits show structural similarity w/ positive control and 97% of the hits contain benzyl-sulfonamide as a common structural feature


6-ethoxy-1,3-benzothiazole-2-sulfonamide

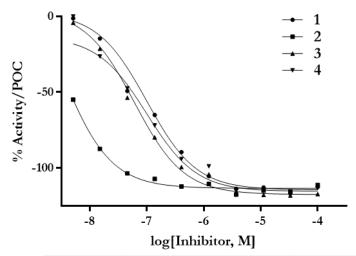
| Substructures of positive control | Compounds | Total hit compounds | % Total hit compounds |
|-----------------------------------|-----------|---------------------|-----------------------|
| Benzothiazoles                    | 2         | 59                  | 3                     |
| Alkyl aryl ethers                 | 13        | 59                  | 22                    |
| Organosulfonamides                | 57        | 59                  | 97                    |
| Benzenoids                        | 5         | 59                  | 8                     |
| Thiazoles                         | 2         | 59                  | 3                     |
| Azacyclic compounds               | 31        | 59                  | 53                    |


# Example of top 4 hits re-confirmed in orthogonal enzymatic assay




N-benzyl-4-fluoro-N-(4-sulfamoylbenzyl)benzamide




6-ethoxy-1,3-benzothiazole-2-sulfonamide



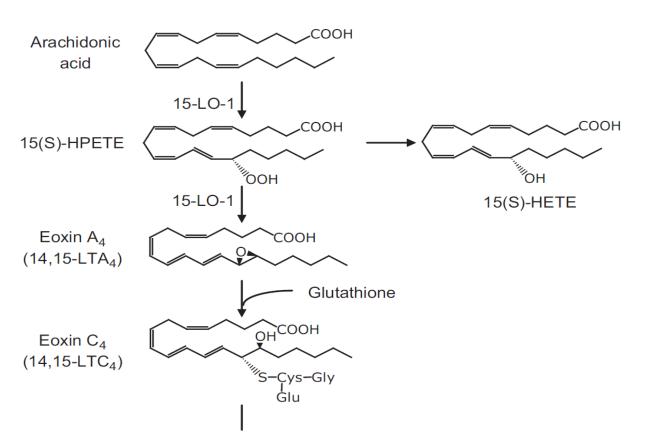
5-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)-2-thiophenesulfonamide



2-(4-methylphenyl)-N-(2-(4-sulfamoylphenyl)ethyl)-1,3thiazole-4-carboxamide



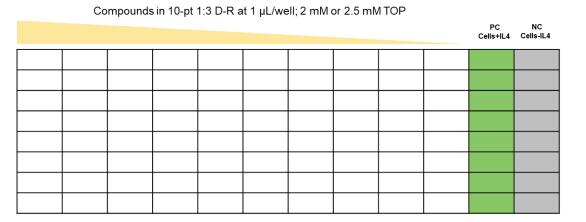
| Inhibitor#   | TOF POE | SWATH POE | IC50 (M)                  |
|--------------|---------|-----------|---------------------------|
| Illinoitor # | TOFTOE  | SWAIIIIOE | 1C30 (N1)                 |
| 1            | 2159.56 | 5489.20   | 100.50 × 10 <sup>-9</sup> |
| 2            | 4256.55 | 13682.44  | 3.09 × 10 <sup>-9</sup>   |
| 3            | 1488.64 | 8398.79   | 60.55 × 10 <sup>-9</sup>  |
| 4            | 862.02  | 8613.24   | 100.70 × 10-9             |

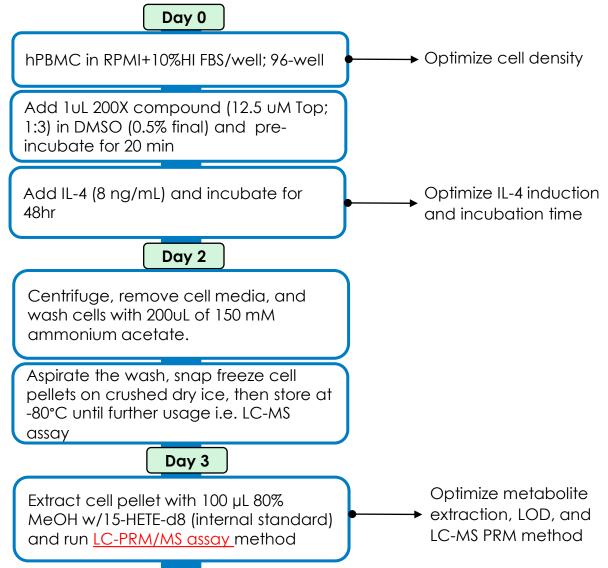



# Cellular target activity assessment by mass spectrometry (where probe-based methods perform poorly)

Goal: Cellular enzyme inhibition assay by MS to verify and expand the hit compounds

Target: 15-LO-1


Therapeutic area: Inflammation



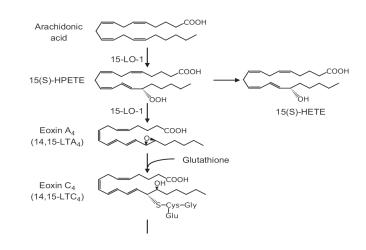

- hPBMCs expresses hALOX15 upon +IL4 treatment
- Cellular hALOX15 metabolizes cellular Arachidonic acid to 15(S)-HETE.
- Extract and enrich cellular metabolites.
- LC-MS method selects 319.23 ion (15-HETE) and 327.28 (15-HETE-d8) and tracks MS/MS transitions (or detects signature fragment ion)
- Extract 15-HETE/15-HETE-d8 ratio as a measure of relative intensity of 15-HETE, thereby measuring cellular enzymatic activity.

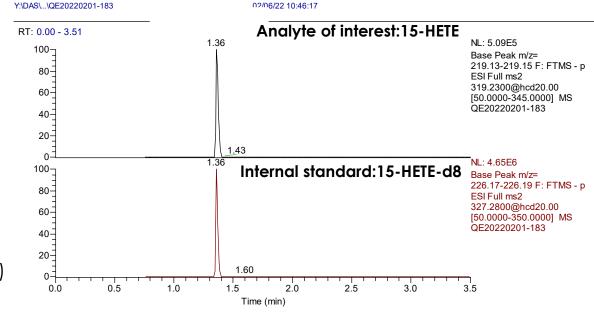


# Cellular enzymatic assay by MS





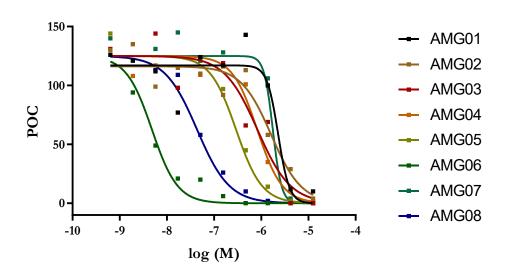




# Method parameters

| LC          | Waters ACQUITY H-Class                          | Time (min) | %B | Flow rate (mL/min) |
|-------------|-------------------------------------------------|------------|----|--------------------|
| Column      | Peptide BEH-C18 300Å, 1.7<br>µm, 2.1 mm X 50 mm | 0          | 30 | 0.7                |
| Column Temp | 40°C                                            | 0.9        | 30 | 0.7                |
| Solvent A   | 0.1% formic acid/ H2O                           | 1          | 80 | 0.7                |
| C - L L D   | 0.1% formic acid/ 99.9%                         | 2.8        | 80 | 0.8                |
| Solvent B   | acetonitrile                                    | 2.9        | 30 | 0.8                |
| Injection   | 20 uL                                           | 3.5        | 30 | 0.8                |

| MS                       | Thermo Q-Exactive Plus |
|--------------------------|------------------------|
| HESI source              |                        |
| Sheath gas flow rate     | 58                     |
| Aux gas flow rate        | 16                     |
| Sweep gas flow rate      | 3                      |
| Spray voltage (kV)       | 3.5                    |
| Capillary temp (°C)      | 281                    |
| S-lens RF level          | 50                     |
| Aux gas heater temp (°C) | 463                    |

- FTMS p ESI SIM ms [310.0000-340.0000]
- FTMS p ESI Full ms2 319.2300@hcd20.00 [50.0000-345.0000] (15-HETE)
   Extract the m/z range 219.13-219.15
- FTMS p ESI Full ms2 327.2800@hcd20.00 [50.0000-350.0000] (**15-HETE-d8**) Extract the m/z range 226.17-226.19



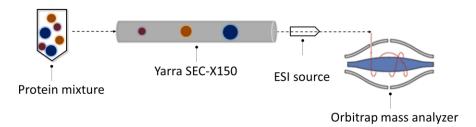


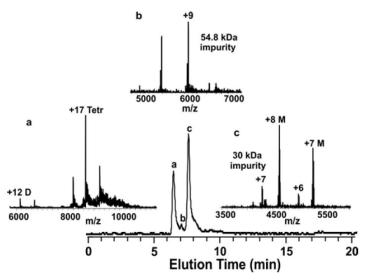



# Summary

Plate: 1800150721

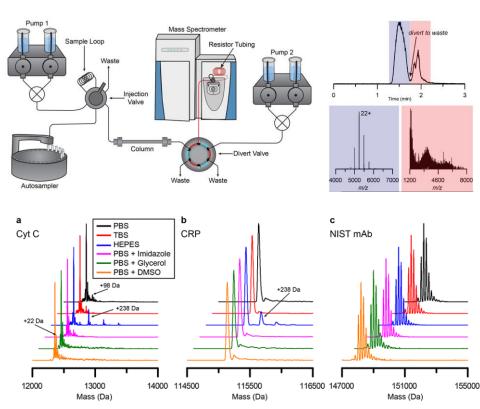



| ID    | IC50 (μM) | Note                               |
|-------|-----------|------------------------------------|
| AMG01 | 2.2840    | Pharmacological Control            |
| AMG02 | 1.6260    |                                    |
| AMG03 | 0.8304    | Inactive VHL based target degrader |
| AMG04 | 0.8224    |                                    |
| AMG05 | 0.2929    |                                    |
| AMG06 | 0.0048    | Active VHL based target degrader   |
| AMG07 | 1.7610    |                                    |
| AMG08 | 0.0437    | Cereblon based target degrader     |


|       | Cellular enzymatic LC-<br>PRM/MS assay | In vitro enzymatic LC-MS assay |  |  |  |
|-------|----------------------------------------|--------------------------------|--|--|--|
| ID    | IC50 (μM)                              | IC50 (μM)                      |  |  |  |
| AMG03 | 0.8304                                 | 0.1200                         |  |  |  |
| AMG06 | 0.0048                                 | 0.0918                         |  |  |  |
| AMG08 | 0.0437                                 | 0.0258                         |  |  |  |



# Platforming native MS


## **Native aSEC-MS**





TIC chromatogram for the separation of alcohol dehydrogenase (ADH) by a Yarra X150 SEC-MS

#### **Native OBE-MS**



Deconvoluted mass spectra demonstrating the removal of non-volatile components from proteins in common biological buffers by OBE-MS



# Platforming native MS

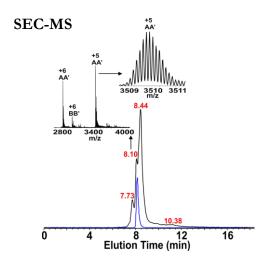
## 1. Protein mixture



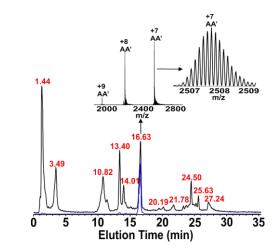
Equimolar mixture of AA', BB',.....GG'

#### 2. Denature




5 M guanidine hydrochloride and incubate at 75°C for 30 minutes

## 3. Re-equilibrate




Dialysis in 150 mM ammonium acetate

## **Native aIEX-MS**



**WCX-MS** 



Non-specific hetero dimer

Specific hetero dimer

|         |    | Subunit |   |   |   |   |   |   |  |  |
|---------|----|---------|---|---|---|---|---|---|--|--|
|         |    | A       | В | С | D | E | F | G |  |  |
|         | A' |         |   |   |   |   |   |   |  |  |
|         | B' |         |   |   |   |   |   |   |  |  |
| iit     | Ĉ  |         |   |   |   |   |   |   |  |  |
| Subunit | D' |         |   |   |   |   |   |   |  |  |
| S       | Ε' |         |   |   |   |   |   |   |  |  |
|         | F' |         |   |   |   |   |   |   |  |  |
|         | G' |         |   |   |   |   |   |   |  |  |



# Where platformed native MS fits into therapeutic research?

- Early discovery reagent protein screening: To check metal ions, cofactor, peptide binding, and oligomerization stoichiometry
- Conjugate characterizations (protein-drug, protein-peptide, protein-oligo, etc.)
- Design-and-test of multispecific modalities (multichain antibodies)
- Protein-small molecule/molecular glue/PROTAC screening

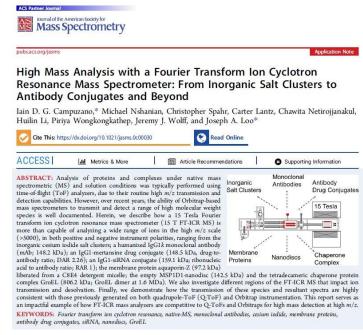


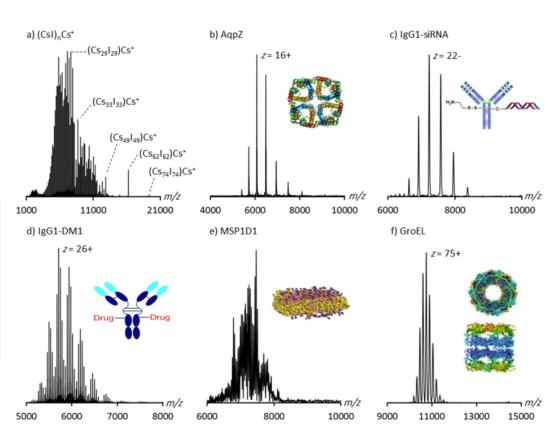
and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in

2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla

Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data

acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral


simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS


analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective

separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method.

Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where

it can be applied within the biopharmaceutical research environment for routine therapeutic project support.







# **Acknowledgements**

#### The Ohio State University Columbus

Vicki Wysocki

Florian Busch

Mengxuan Jia

Zac VanAernum

Andrew Norris

Waters Corporation

Thermo Fisher Scientific

Phytronics

Agilent

Sciex

## University of Washington Seattle

David Baker

Scott Boyken

Yang Hsia

Zibo Chen

NIH grant# R01GM113658

#### Amgen Thousand Oaks

#### **CRADI**

Chris Spahr

Shuai Wu

Iain Campuzano

Marti Head

#### Discovery Technologies (DT)

John McCarter

Tisha San Miguel

Kathy Chen

Fernando Vargas

Leo Mok

Franck Madoux

Michelle Boursier

Dylan Oakley

#### Research Materials Management (RMM)

Amanda Lembke Michelle Lee-Lamas

#### Medicinal Chemistry

John Butler

Nuria Tamayo

Brian Lanman

Kevin Greenman

Ana Minatti

#### Therapeutic Area (TA)

Willem den Besten (Pim) - Oncology

Dave Fong – Inflammation

Jonathan Phillips – Inflammation

Amrita Das – Cardio-metabolic

Amgen Legal Team

