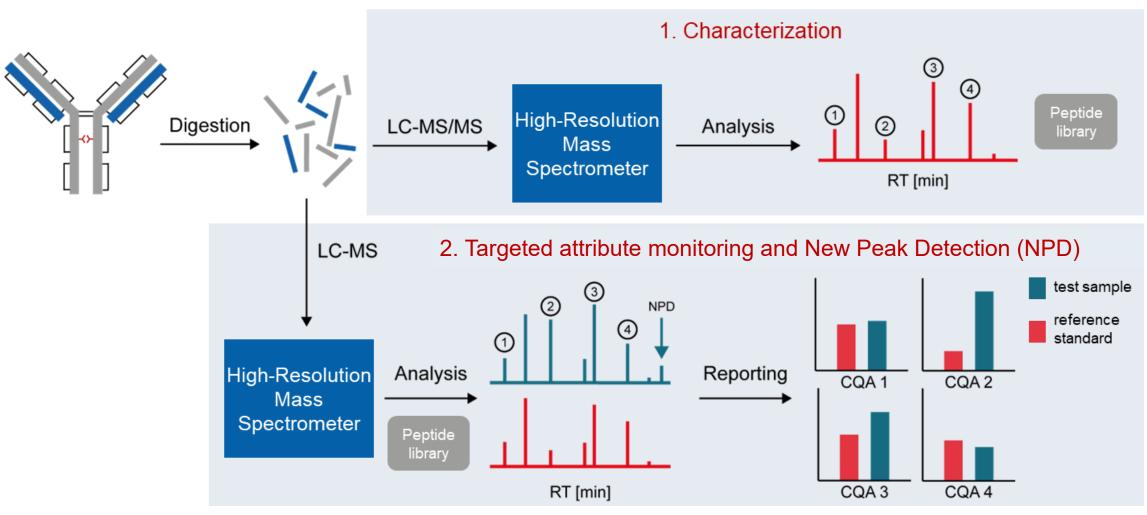
A Robust and Versatile New Peak Detection Workflow

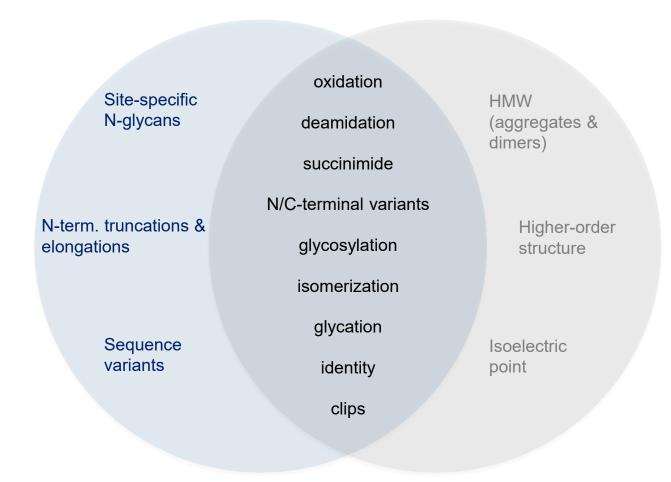
to Facilitate the Implementation of the LC-MS Multi-Attribute Method from

Research to Commercialization

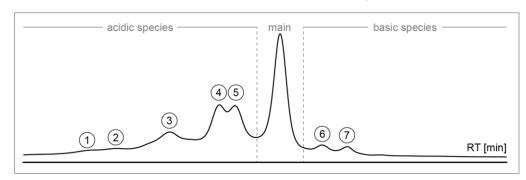
Patrick Sascha Merkle, PhD Novartis Pharma AG, Basel, Switzerland


CASSS MS – Session VIII – MAM for Product and Process Characterization and Quality Control September 26th 2025, Costa Mesa, CA

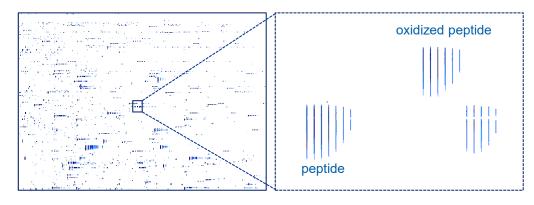
Disclaimers


- The following slides are intended for educational purposes only and for the personal use of the audience.
- The following slides are not intended for wider distribution outside the intended purpose without presenter approval.
- The content of this slide deck is accurate to the best of the presenter's knowledge at the time of creation.

Prototypical LC-MS MAM Workflow

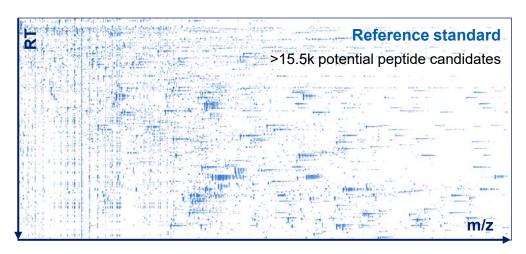


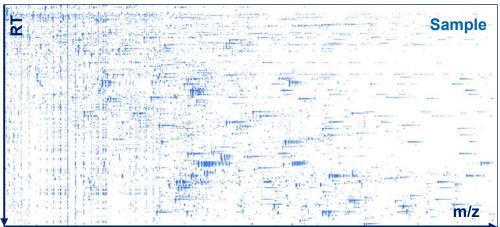
see also Rogers et al., 2018; Rogstad et al., 2019; Pohl et al., 2023


MAM vs. Traditional Separation Methods

Traditional separation methods (e.g., CEX)

LC-MS Multi-Attribute Method (MAM)

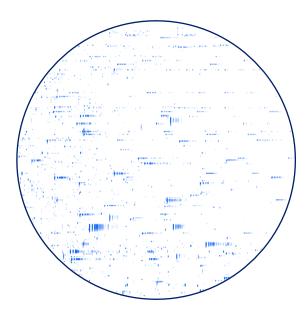


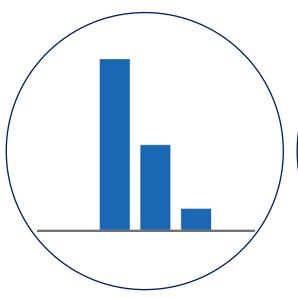


MAM has the proven capacity to replace multiple conventional methods, while providing improved specificity.

New Peak Detection (NPD) – General Characteristics

NPD Characteristics


- Process designed to identify and report on unexpected changes in product quality
- Pairwise comparison of sample data against a reference standard
- Detection of new, absent, and changed (increased or decreased) species relative to the reference standard



NPD as an essential tool to mitigate the risks of unexpected changes in product quality.

The Novartis-Genedata Partnership Project for NPD

April 2024 – March 2025

Tackle Data Complexity

Development of NPD-related core activities to tackle the complexity of LC-MS MAM data

Need for Speed

Development of an integrative workflow in Genedata Expressionist that can provide NPD results in a timely manner

Reduction of False Positives

Reduction of false positive NPD hits that derive from workflow variability and/or inherent method artifacts

Maximize Applicability

Maximize workflow applicability by designing an intuitive, synchronized, and informative NPD user interface

Blue sky vision: Development of a best-in-class NPD workflow in terms of sensitivity, speed, and robustness

Published Concepts to Reduce False Positives

Rogers et. al

NPD analysis as an impurity / purity method in the context of MAM

Mouchahoir et. al.

NPD performance metrics from the MAM consortium interlaboratory study

Sadek et. al

Known Peak List (KPL) MAM samples

Zhang et. al

Single replicate statistics and pairwise analysis of to detect rare differences between two LC-MS runs

Cao et. al

Reference replicates and respective statistical evaluation

Pohl et. al (submitted)

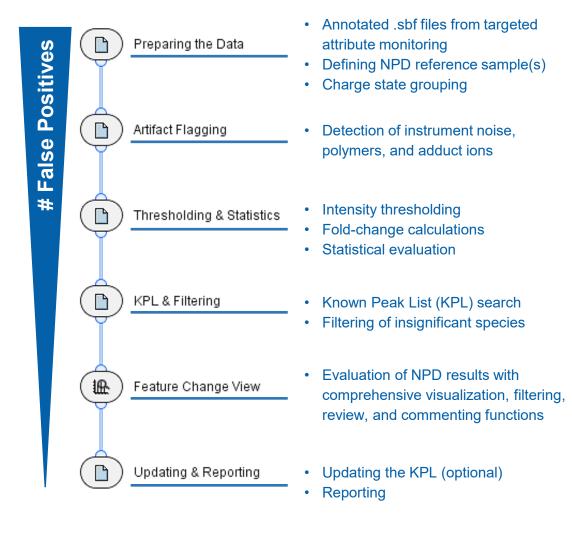
Automatic artifact detection and consolidated NPD analysis

2017

2021

2023

2025



"Funnel strategy" to reduce the number of false positives during NPD analysis using a combination of automatic artifact detection, statistics, and KPL functionalities

Types of False Positives (according to Sadek et al., 2023)

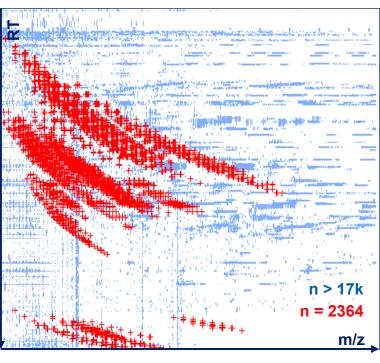
Туре	Description	Solution in Genedata Expressionist
Mass shift	e.g., faulty mass computation / clustering	SST *
Instrument noise	e.g., increase of baseline noise	Chemical noise detection
Gas-phase complex	e.g., ≥ 2 peptides form a complex in the ESI source	KPL
Peptide recovery	e.g., faulty sample handling / ESI source condition	SST, library validation *
Chromatography shift	e.g., identical peptides display different RT values	Library RT calibration *
Carry-over	e.g., peptides from preceding sample are introduced	KPL
Adduct ion	e.g., metal adducts incl. sodium, potassium, and iron	Co-elution detection
Missed cleavages	e.g., incomplete digestion during sample preparation	KPL

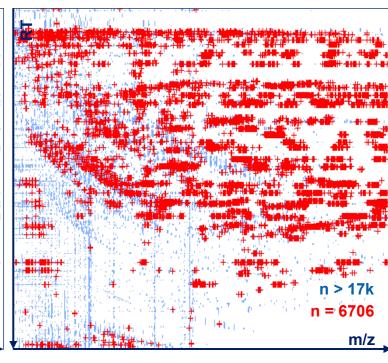
Developed NPD Workflow in Genedata Expressionist 2025.1

Selected Highlights

- Core NPD activities are made publicly available in Expressionist version 2025.1
- "Consolidated" NPD analysis reducing data analysis time to minutes without compromising workflow sensitivity
- Differentiation of true new peaks from false positives by means of automatic artifact detection
- Compatible with NPD datasets with or without replicate measurements

Genedata Webinar: Enabling MS-Based MAM in QC Through a Robust New **Peak Detection Workflow**


Automatic Artifact Detection


Chemical noise detection

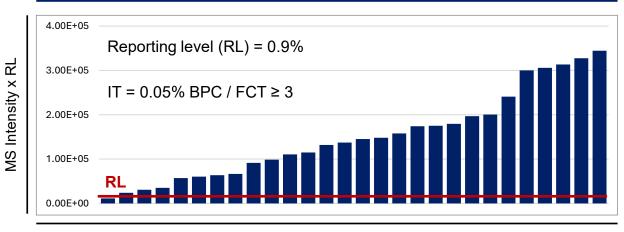
Polymer detection

Adduct ion detection

Chemical noise is detected and flagged by consolidating features with the same m/z (± mass tolerance window) that exceed a user-defined minimum feature count threshold

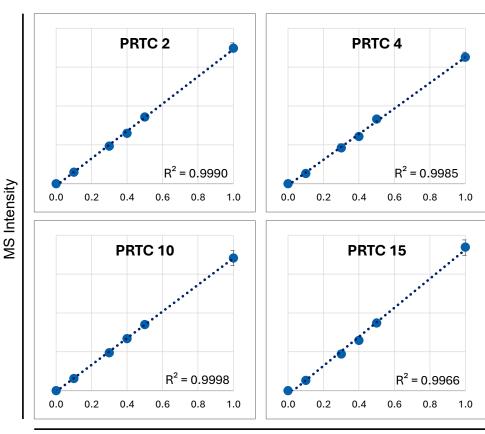
Polymer species are identified and flagged based on repeating mass differences, a user-defined minimum feature count threshold as well as m/z and RT tolerance windows

Adduct ions are detected and flagged within a userdefined mass range based on co-elution with a primary feature (most intense signal) ± user-specified RT tolerance window



Efficient flagging of method artifacts and polymer species for exclusion in downstream analysis

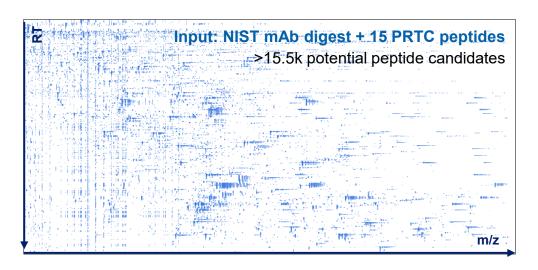
Validation of the NPD Workflow for mAb1

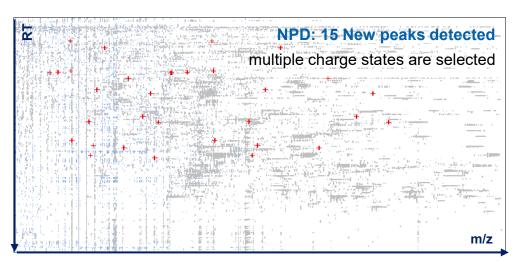

Rational Design of Intensity & Fold-Change Thresholds (IT / FCT)

mAb1 Primary Peptides

- IT was defined based on the intensity distribution of mAb1 peptides
- FCT was defined based on the variability of mAb1 peptide intensities
- Validation of the NPD workflow as limit test according to ICH Q2 (LOD, LOQ, and specificity) using the Pierce Retention Time Calibration (PRTC) standard for impurity spiking

PRTC Spiking & Linearity Assessment

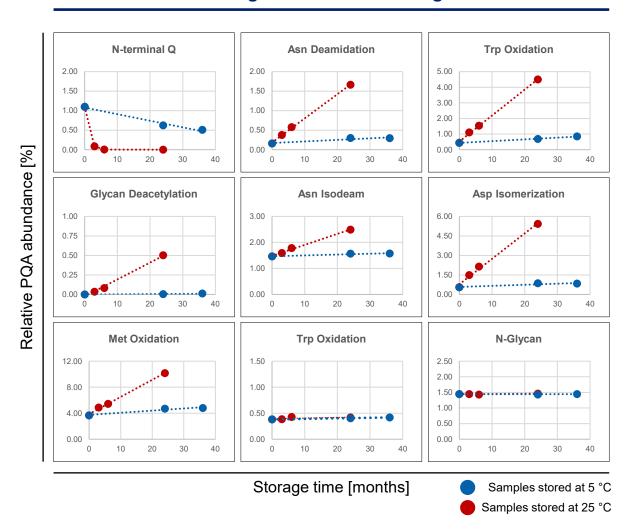



Spiking Level [pmol]

Determined LOQ values of PRTC peptides were below the intensity threshold and defined reporting level. Specificity confirmed through absence of interferences (no false positive assignments)

Analytical Control Strategy and Customized Reporting

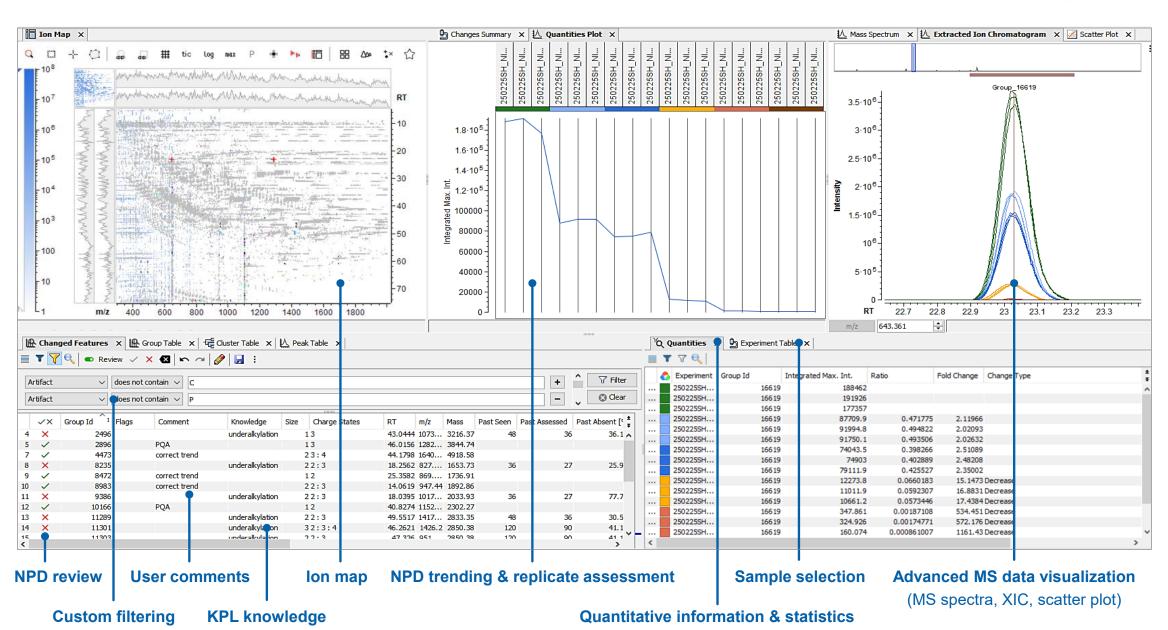
	Name				NPD role			
04_NISTmAb_01				Reference				
11_NISTmAb_RTcalPepMix_0p5pmol_1				Positive control				
26_NISTmAb_04				Negative control				
sitive Control								
Expected Peaks Detec			ed Peaks Pass/Fail					
15			15			Pass		
egative Control	Unexpec	ted Peaks			Pa	ss/Fail		
	(0				Pass		
pected Peptides Name	Peptide	Peptide (Library)	Mass	Fold Change	Change Type	Integrated Max. Int.	Pass/Fai	
Group_04161	SAAGAFGPELSR	SAAGAFGPELSR	1171.59	4.33	Increase	411140.38	Pass	
Group_04849	LSSEAPALFQFDLK	LSSEAPALFQFDLK	1572.83	Infinity	New	49379.70	Pass	
Group_04929	GILFVGSGVSGGEEGA R	GILFVGSGVSGGEEGA R	1600.81	Infinity	New	178098.56	Pass	
	IGDYAGIK	IGDYAGIK	843.46	Infinity	New	505838.53	Pass	
Group_26629	IGDIAGIK		0.15.10	Initity	INCW		1 033	
Group_26629 Group_27222	DIPVPKPK	DIPVPKPK	900.55	Infinity	New	254079.31	Pass	
•		DIPVPKPK SSAPPPPPR						
Group_27222	DIPVPKPK		900.55	Infinity	New	254079.31	Pass	
Group_27222 Group_29205	DIPVPKPK SSAPPPPPR	SSAPPPPPR	900.55 985.52	Infinity Infinity	New New	254079.31 241043.60	Pass Pass	
Group_27222 Group_29205 Group_29267	DIPVPKPK SSAPPPPPR HVLTSIGEK	SSAPPPPPR HVLTSIGEK	900.55 985.52 990.56	Infinity Infinity Infinity	New New New	254079.31 241043.60 181322.62	Pass Pass Pass	
Group_27222 Group_29205 Group_29267 Group_29411	DIPVPKPK SSAPPPPPR HVLTSIGEK LTILEELR	SSAPPPPPR HVLTSIGEK LTILEELR	900.55 985.52 990.56 995.59	Infinity Infinity Infinity Infinity	New New New	254079.31 241043.60 181322.62 147921.14	Pass Pass Pass Pass	
Group_27222 Group_29205 Group_29267 Group_29411 Group_31063	DIPVPKPK SSAPPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR	SSAPPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR	900.55 985.52 990.56 995.59 1114.64	Infinity Infinity Infinity Infinity Infinity Infinity	New New New New	254079,31 241043.60 181322.62 147921.14 151983.69	Pass Pass Pass Pass Pass	
Group_27222 Group_29205 Group_29267 Group_29411 Group_31063 Group_31213	DIPVPKPK SSAPPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR	SSAPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR	900.55 985.52 990.56 995.59 1114.64 1144.59	Infinity Infinity Infinity Infinity Infinity Infinity Infinity	New New New New New New	254079.31 241043.60 181322.62 147921.14 151983.69 101499.09	Pass Pass Pass Pass Pass	
Group_27222 Group_29205 Group_29267 Group_29411 Group_31063 Group_31213 Group_31494	DIPVPKPK SSAPPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR GISNEGQNASIK	SSAPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR GISNEGQNASIK	900.55 985.52 990.56 995.59 1114.64 1144.59 1224.62	Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity	New New New New New New New New	254079.31 241043.60 181322.62 147921.14 151983.69 101499.09 187745.56	Pass Pass Pass Pass Pass Pass Pass Pass	
Group_27222 Group_29205 Group_29267 Group_29411 Group_31063 Group_31213 Group_31494 Group_31995	DIPVPKPK SSAPPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR GISNEGQNASIK ELASGLSFPVGFK	SSAPPPPR HVLTSIGEK LTILEELR GLILVGGYGTR NGFILDGFPR GISNEGQNASIK ELASGLSFPVGFK	900.55 985.52 990.56 995.59 1114.64 1144.59 1224.62 1358.73	Infinity	New	254079.31 241043.60 181322.62 147921.14 151983.69 101499.09 187745.56	Pass Pass Pass Pass Pass Pass Pass Pass	


^{*} report generated with custom activiy, not included in Genedata Expressionist 2025.1

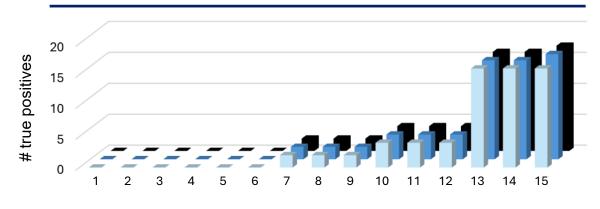
All PRTC peptides must be found at 0.5 pmol spiking level (equivalent to validated RL). Absence of new / changed species for neagtive control sample.

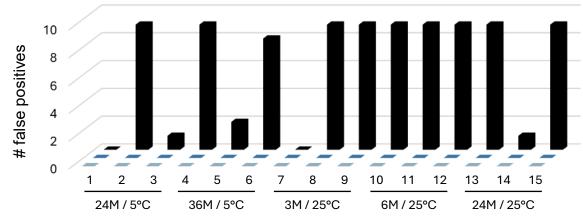
Case Study I: Long-Term Stability Study of mAb1

Targeted PQA Monitoring



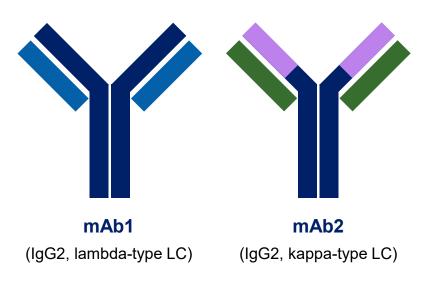
- mAb1 samples from DP long-term (5 °C) and accelerated (25 °C) stability studies.
- Triplicate measurements of 6 time points including T0 (defined as reference during NPD analysis)
- MAM peptide library contains approx. 170 species of common post-translational modifications


mAb1 DP is stable under intended long-term storage conditions. Accelerated stability conditions trigger mAb1 degradation.


NPD User Interface – Comprehensive Information at Your Fingertips

Case Study I: NPD Analysis of mAb1 Stability Samples

New Peak Detection Analysis


■ w/o KPL ■ w/ KPL ■ w/ KPL & replicates

- IT = 0.05% BPC and FCT ≥ 3
- KPL (based on reference standard injections) included 40 species (e.g., underalkylation)
- Advanced filtering based on artifact flags, significance,
 KPL annotations, and charge state characteristics
- Required NPD data analysis time: ≤ 20 min

NPD results mirror the findings from targeted attribute monitoring. No false positive species reported.

Case Study II: Impurity Detection

IT (% BPC)	0.05%
FCT	≥ 3
# Rep.	3

Spiking level	mAb2 LC peptides	mAb2 HC peptides	# False positives
[%mol/mol]	detected / expected	detected / expected	
0.1	1 / 16	0 / 10	0
0.5	11 / 16	7 / 10	0
1.0	13 / 16	9 / 10	0
2.0	18 / 16 ¹	11 / 10 ²	0

¹ two additional isoD variants of mAb2 LC peptides
² one additional miscleaved mAb2 HC peptide

- Spiking of mAb2 (IgG2, kappa LC) into mAb1 (IgG2, lambda LC) at patient-relevant levels (0.1 – 2.0%)
- Unique mAb2 peptides: 16 LC and 10 HC peptides (not including small and/or hydrophilic peptides)
- Unspiked mAb1 samples (n=3) served as references for NPD analysis

Results confirm specificity and sensitivity of the NPD workflow to detect unknown impurities at patient-relevant levels

Potential application of NPD in the context of protein characterization

Summary and Conclusions

The developed Genedata Expressionist activities enable a robust and sensitive NPD workflow. The core NPD activities have been made publicly available in Expressionist version 2025.1.

"Funnel strategy" to reduce the number of false positives during NPD analysis using a combination of automatic artifact detection, statistics, and KPL functionalities.

Consolidated NPD analysis reduces the time investment for data analysis to minutes and allows for trending of new and changed species across a given dataset.

The NPD workflow was validated as a limit test according to ICH Q2 guidelines. Results from individual case studies confirm workflow specificity and sensitivity to detect new and changed peptide species at patient-relevant levels.

An informative and synchronized NPD user interface has been designed. Relevant and comprehensive data are displayed at your fingertips for data evaluation and informed decision making.

Acknowledgements

> TRD Bx Switzerland

Thomas Pohl

Francois Griaud

Victor Le

Sonja Hudelmaier

Michael Schleicher

Haiyan Zhang

Michel Starck

Guillaume Rey

Joachim Ritter

Christoph Bächler

John den Engelsman

> TRD Bx Austria

Stefan Mittermayr

Jens Pettelkau

Shah Hussain

Christian Kirchler

> TRD Bx Slovenia

Maja Semanjski Curkovic

Aljaz Bertalanic

Nina Pirher

Eva Kranjc

Tilen Vidmar

> Genedata

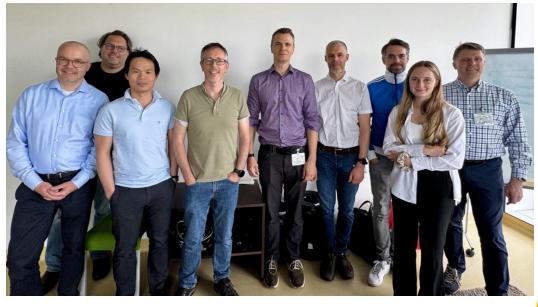
Claudio Schmid

Dominik Mertens

Marlis Zeiler

Andrei Starikov

Edward Waterman


Nick DeGraan-Weber

Michelle English

Carsten Soenksen

Reto Ossola

Petra Gutenbrunner

From left to right: Thomas Pohl, Michael Schleicher, Victor Le, Francois Griaud, Dominik Mertens, Reto Ossola, Patrick Merkle, Sonja Hudelmeier, and Claudio Schmid

Thank you

Contact information:

Patrick Sascha Merkle, PhD patrick.merkle@novartis.com

Thomas Pohl, PhD thomas.pohl@novartis.com

