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Secondary to quaternary

Protein biological function, stability and molecular interactions
Mass Spectrometry-Based Approaches

Fast and sensitive

Real-time characterization in solution (under physiological
conditions)

High throughput capability

Simple sample preparation; requires only ng-ug amounts

High spatial resolution (peptides & residues)

Liu et al., Chemical Rev. 2020, 120, 4355-4454



Structural Proteomics— add labels/localize with proteomics

Native MS

Stoichiomey
and assembly

HDX

2° structure
and solvent accessibility

Footprinting

Crosslinking

Distance limited contact

sec-hr reaction times

ms-min reaction times
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A comprehensive characterization platform is necessary for protein HOS analysis

PDB 5u4p




Ebola virion

e eVP35: multifunctional cofactor
essential for viral replication and
immune evasion

* eVP35-E3 ubiquitin ligase MIB2
interaction
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MIB2: Mindbomb protein 2, E3 ubiquitin ligase

MZM MREP Ankyrin repeats RING domains
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Recruit new binding partners

+» eVP35 binding inhibits the function of MIB2 in Type | IFN signaling
+* Understanding MIB2-eVP35 interaction will provide additional insight
into EBOV viral pathogenesis

Batra, J. et. Al. Cell. 2018. 175, 1917-1930.e13 MIB2 AlphaFold structure 4



Platform: Binding interaction between eVP35-MiB2
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* Truncation experiments characterized MIB2 MZM and MREP domains are critical for VP35 binding

*  MIB2 54 g4 cONstruct was selected lConformationaI binding interfaces? Binding induced structural changes?

Proposed experiment
HDX-MS and XL- MS to localize the eVP35 binding sites on MIB2

Uwase, G. et. Al. bioRxiv. 2025. 5




Crosslinking (XL)-MS identifies distance-limited proximity

bottom-up proteomics
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A comprehensive set of xlinkers was applied in the characterization
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MIB2 MZM and MREP domains crosslink to eVP35 near the identified

" minimal binding site

MZM MIB Repeats Ankyrin Repeats
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*¢ Crosslinked resides
are mapped out

 eVP35: high consistency between MS and
published results

* MIB2: MZM and MREP are close to the binding
interface

! é eVP35

Uwase, G. et. Al. bioRxiv. 2025.



HDX-MS provides insight into second structure and solvent accessiblity
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Digestion: Fungal Xlll-pepsin at 4C

e 376 peptides

* 96% coverage
 Redundancy: 6

* Avg peptide length: 12.5

STRAJAN

] [ ]
[ ]  — |
B s  —
I | I— |
—1 HE [ 1L ]
| — | B [ ]
[ | [ ] B | L ]
[ ] ] s I | — ]
[ —— s =  — | [ [ 1 [ —_ ]
[ | I || [ | [ —  — | = ]
[ s [ | —— — | [—] —/ ]
[ e [ | — — T /] ]
1 I [ | [ | — [ET] [ ] ]
| ! | ! | ! | ! | ! | ! | ! | ! | ! | | ! | ! |
660 680 700 720 740 760 780 800 820 840 860 880 900
MIB2 residue

average % D for all time points [ 0%-20% I 20%-40% 40%-60% 60%-80% No coverage 9



Cterminal

30s in D20 300s in D20 10000s in D20
B 0%-20% I 20%-40% 40%-60% 60%-80% I 80%-100% No coverage
* MZM exhibits relative stability
 Some of the long helices predicted by AlphaFold show > 40% deuterium uptake even at 30 sec of HDX
« HDX results complement the AlphaFold structure by revealing dynamic features of MIB2.

10



Differential HDX reveals potential eVP35 binding sites and remote conformational

changes of MIB2
Differential HDX between MIB2 -/+ eVP35
Differential HDX peptide map Volcano plot
6 (I
Bl B2 B3 B4 B5 B6al P7P8 BIB10 B11B12P13B14 02 P15 a3 o4 P16  PB17a5 o6 P18  of a8 09 .
- A1
= = 1
——] = .
e = = =
s = —_— == = 5 8 = = 4 A B
= (= ] O EEmmmct——— @& EEmor—s — [N ] [ W—N— I ] — o..‘:o
o e o 2 SESe—eees oo B HEee e o b o B < - g
| ' | ' | ' | ' | ' | ' | ' | ' | ' | > BRI
50 100 150 200 250 300 350 400 450 500 c>U . .-“,:-.-.".;:J |
al0 a1l al2 al3 o4 a15016 a17  a18 19020 o21022 023 a24 o025 a26 o227 19 8) —————— : I— —————
[/ — ) | — ) E— I ) D | | D | ) D ) | =] = 2
T T | O
500 550 600 650 700 750 800 850 900
-2 0 2
MIB2 residue Mass difference (Da)
decreased HDX [l P <0.005 P <0.01 P<0.05 * Decreased HDX: binding sites or more hydrogen bonds
increased HDX P <0.005 P <0.01 P<0.05 * Increased HDX: gain flexibility or dynamics P-value cutoff: 0.005
non-significant W Global significance limit: 0.25 Da

E DOI: 10.1002/pro.70096 1

nnnnnnnnnnnnnn



B Decreased HDX
. Increased HDX
No statistically significant diff.

C terminal
loops
Inter-crosslink residues to eVP35

MIB2 (AlphaFold)
* Protected regions form a discontinuous surface (consistent with interXL)
Possibilities:
(i) binding induced conformational changes?
(ii) Or this structure is inconsistent in this context (especially domain-orientation)? (consistent with interXL)
(iii) MZM and MREP appear reoriented upon eVP35 binding?
* ANK 5-6 shows increased flexibility or dynamic motion upon binding

12



HDX-MS and XL-MS results report a potential binding site but
also additional structural perturbations

eVP35 binds MIB2 MZM and MREP domains

MS results complements AlphaFold, revealing dynamics and
alternative domain orientations.

A\

Inspiration: MIB2 domains orientation?

intramolecular XLs within MIB2 inform on domains proximity

v » interXL
MIB2 (AlphaFold)
B Decreased HDX
. Increased HDX MXL dead end
No statistically significant diff. MIB?2

Inter-crosslink residues to eVP35

13
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Native MS

1. intramolecular xlink (within monomer or one subunit of dimer)

2. oligomeric xlink (between two subunits of dimer)
3. mixture of two

‘ How to differentiate them?

Mass photometry data was acquired by Grace Uwase

14



Solution: XL-MS of light/heavy mixtures of MIB2 enables differentiation

After 1:1
« . 15
Light MIB2 monomer N5 MIB2 monomer MIXiNg Light MIB2 monomer N MIB2 monomer
Heavy Heavy
Light MIB2 dimer N> MIB2 dimer Molar ratio 1 2 1

Unmixed L/H MIB2 Mixed L/H MIB2

15



Oligomeric XL

intraXL

Mixture
(if dimer has much
lower abundance)
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Kukaéka, Z. Journal of Proteome Research 2021, 20 (4) 16




Crosslink sites

XL site 1
D131
K163
E228
D293
K181
K220
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E228
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XL site2
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D583
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E550
E889
K725
D820

Ca-Ca distance on
alphafold (A)

29.9
34.5
69.8
34.5
47.5
61.7
44.9

80.4
82.5
25.1
25.8
76.5
13.2
23.8

Theoretical range of
Ca-Ca distance (A)

9-30
9-30
6-16
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6-16
6-16
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MIB2 AlphaFold

+* Most of the intra-xlinks observed are not reasonable for the alphafold structure

s Close proximity between MZM-MREP, MZM-ANK, and MREP - Cterm loop

17
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Experimentally derived MIB2 structure

e HADDOCK was used for docking and intra-
crosslink were imported as distance restraints

 Ambiguous interaction restraints were applied

 Model suggests a more compact structure ---
contrasting AlphaFold extended structure
MZM and MREP domains are positioned closely
together and adjacent to the ANK

* Docking does not account for loop flexibility or
consider conformational changes, potentially
introducing artifacts due to enforced rigidity.

ANK repeats
MIB2 docking representative model ~ (ADDOCK

High-Ambiguity Driven Docking

Honorato et al., Nature Prot. 2024, 19, 3219-3241 . Intra-Crosslink 19



* The representative model aligns well with
HDX and inter-crosslinks results

 HDX protected regions form a continuous
surface (primary protection region)

 MIB2 residues inter-crosslinked to eVP35
are spatially proximal and overlap with the
primary protection region

B Decreased HDX
™ Increased HDX
Non-significant
Inter-crosslink residues to eVP35

K181

MIB2 docking representative model

Honorato et al., Nature Prot. 2024, 19, 3219-3241

20



Primary protected region
eVP35 MIB2 docking model

This electrostatic complementarity at the interface supports the plausibility of the proposed domains
orientation.
The model is not expected to represent MIB2 definitive conformations.

Negatively charged _ _ Positively charged 21




Conclusions and Perspectives

1. Characterized successfully the MIB2-eVP35 binding interface and achieved an
experimentally-derived MIB2 structure.

2. Allowed additional structural understanding of Ebola viral pathogenesis.
3. Established an integrated platform for protein HOS and protein-protein interface

characterization, particularly for multi-domain, flexible protein like MIB2 that eludes Al-
based docking alone.

4. Provided approaches that would aid the design of protein therapeutics

Integrated platform of protein HOS characterization
.% HDX Crosslinking Molecular docking

ADDOCK

High-Ambiguity Driven Docking

Manuscript in preparation PDB 5u4p Honorato et al., Nature Prot. 2024, 19, 3219-3241 29
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