

LCMS Assays for mRNA CQAs: A Development Story

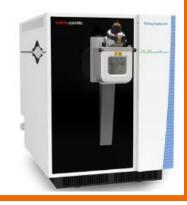
Alex Johnson, Ph.D.

Sr. Scientist II, Analytical Method Development

Analytical Methods for mRNA DS CQAs

- Current 5' cap method is HPLC-UV based
 - Method needs to be suitable for many different constructs
 - Limitations
 - Long gradient (~100 minutes) required for best separation of fragments
 - Long development time
 - Length of fragments generated by the digestion
 - Degraded mRNA from stability studies interfere with separation
- This seems like a job for Mass Spec!

Quality	Attribute	Method			
		Capillary electrophoresis ^D			
Integrity	mRNA intactness	Capillary gel electrophoresis (CGE) ^D			
		Agarose gel electrophoresis			
	mRNA purity	Ion pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC)			
		Reverse-phase liquid chromatography mass			
	5' capping efficiency	Ion pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC)			
		Liquid chromatography mass spectroscopy (LC-MS/MS) ^D			
		Liquid chromatography mass spectroscopy (LC-MS/MS) ^D			
	3' poly(A) tail length	Ion pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC)			
	Dende est solute d'imperiation de DNA	Immunoblot			
Purity	Product related impurities - dsRNA	Enzyme-linked immunosorbent assay (ELISA)			
	Product related impurities - aggregate quantitation	Size exclusion-high-performance liquid chromatography (SEC-HPLC) ^D			
	Product related impurities - percentage of fragment mRNA	Reversed-phase HPLC (RP-HPLC) ^D			
	Process related impurities - residual DNA template	quantitative PCR (qPCR)			
	Process related impurities - quantitation of free/non-incorporated nucleosides	Reverse-phase liquid chromatography mass spectroscopy (RP-LC-MS/MS) ^D			
	Process related impurities - residual NTP and capping agent	Anion exchange high-performance liquid chromatography (AEX-HPLC) ^D			
	Process related impurities - residual T7 RNA polymerase content	Enzyme-linked immunosorbent assay (ELISA)			
Potency	Expression of target protein	Cell-based assay			
0-1-1-	Endotoxin	USP <85>			
Safety	Bioburden	USP <61>, <62>, <1115>			
	Appearance	USP <790>			
Other	Residual solvents	USP <467>			
	pH	USP <791>			


^{1.} Analytical Procedures for Quality of mRNA Vaccines and Therapeutics: Draft Guidelines: 3rd Ed.

Aldevron's High-Res Mass Spectrometry Lab

Thermo Fisher Exploris[™] 480 (Orbitrap)

- VanquishTM Horizon UHPLC Front-End
- MS/MS workflow for 5' cap Fragment Sequence ID
- BioPharma Finder[™] software for nucleic acid workflows*

Agilent Advance Bio 6545XT (QTOF)

- Agilent 1290 Bio Binary Pump UPLC Front-End
- Capable of poly(A) distribution for both enzymatic >180 As and encoded tails
- Capable of automated 5' cap analysis using BioConfirm. Most "GMP-ready"

Waters Xevo[™] G3 (QTOF)

- Waters[™] ACQUITY Premier UPLC Front-End
- Characterization of poly(A) tail and
 5' cap digestion products
- waters_connectTM for nucleic acid workflows

SCIEX ZenoTOF 7600 (QTOF)

- Waters ACQUITY Premier UPLC Front-End
- Electron Activated Dissociation (EAD) – allows for unique fragmentation for lipid analysis

Aldevron's High-Res Mass Spectrometry Lab

O Colomb

Thermo Fisher Exploris[™] 480 (Orbitrap)

- VanquishTM Horizon UHPLC Front-End
- MS/MS workflow for 5' cap Fragment Sequence ID
- BioPharma FinderTM software for nucleic acid workflows*

Agilent Advance Bio 6545XT (QTOF)

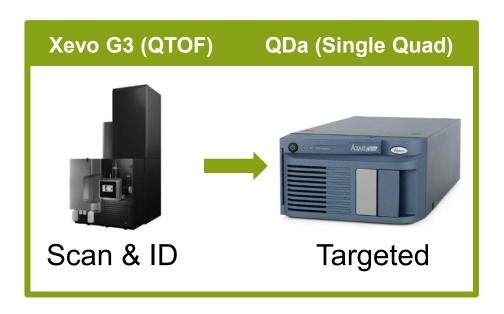
 Agilent 1290 Bio Binary Pump UPLC Front-End

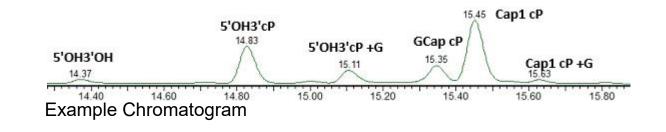
Canable of poly(A) distribution for both 80 As and encoded tails.

itomated 5' cap analysis firm. Most "GMP-ready"

Waters Xevo™ G3 (Q1

- WatersTM ACQUITY Premier UPLC Front-End
- Characterization of poly(A) tail and
 5' cap digestion products
- waters_connectTM for nucleic acid workflows




- waters ACQUITY Premier UPLC Front-End
- Electron Activated Dissociation (EAD) – allows for unique fragmentation for lipid analysis

5'Cap LCMS POC Data

	Run 1		Run 2		Run 3	
Sample name	%Purity	% Recovery	%Purity	% Recovery	%Purity	% Recovery
100% capped	93.7	N/A	93.4	N/A	93.5	N/A
99% capped	92.2	99.4	92	99.5	92.1	99.5
95% capped	86.7	97.4	86.5	97.5	86.5	97.4
85% capped	75.9	95.3	75.8	95.5	75.9	95.5
70% capped	59.2	90.3	58.7	89.7	59.4	90.7
100% capped 2x Dilution	96.4	99.9	97.5	100.4	97.1	100.1
100% capped 3x Dilution	97.5	99.9				
100% capped 5x dilution	98.7	100.1	99.0	100.1	99.1	100.3
100% capped 10x dilution			99.8	100.4	99.6	100.2
100% capped 20x dilution			100.0	100.1	99.8	99.9

- DNAzyme based digestion
- Tested set of capped material with uncapped spiked in
 - 1% 30% Uncap spikes
- Perform 3 reps with fresh digests on different days.
- 89.7 99.5% Recoveries across 3 analytical runs
- 0.8% RSD n=3 for Capped Sample
- Dilutional Linearity $-R^2 = 0.9995$

3' Poly(A) Tail POC with QDa

Single Quads like the QDa struggle with poly(A)

Tail Length	Theoretical Monoisotopic Mass (Da)	Observed Deconvoluted Mass (Da)	Mass Difference (Da)	
20A	6519.09	6524.2	5.1	
30A	9809.613	9815.1	5.5	
40A	13100.135	13105.4	5.3	
50A	16390.658	16400.1	9.4	
60A	19681.181	19688.2	7.0	
70A	22971.704	23021.6	49.9	
80A	26262.227	26286.4	24.2	
90A	29552.75	29508.9	-43.8	
100A	32843.273	32800.8	-42.5	

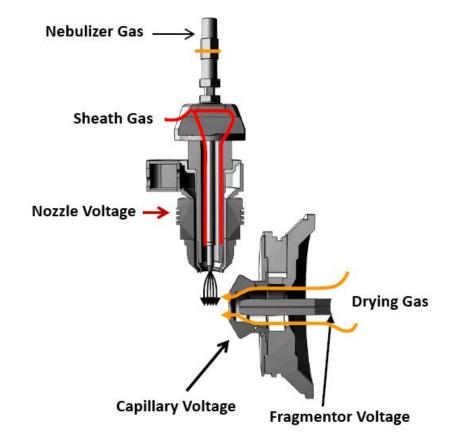
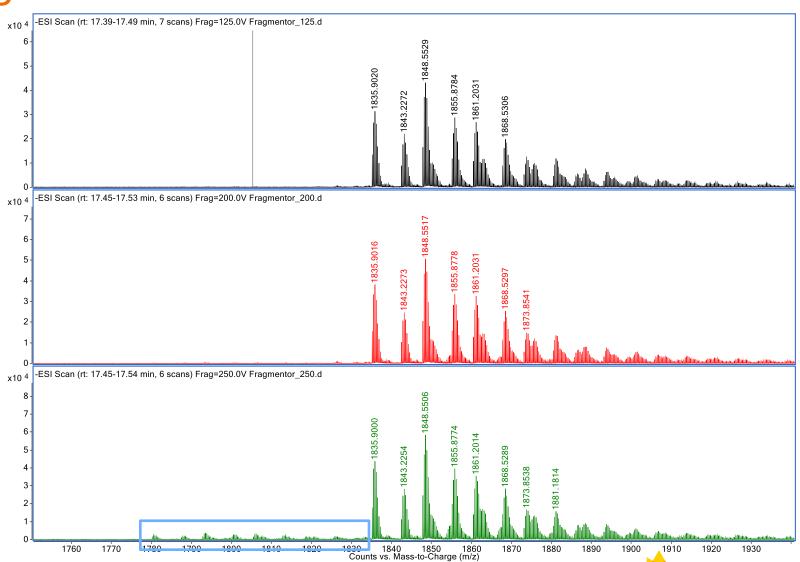
- Ask was to move only one instrument to QC
- Shift focus to QTOF

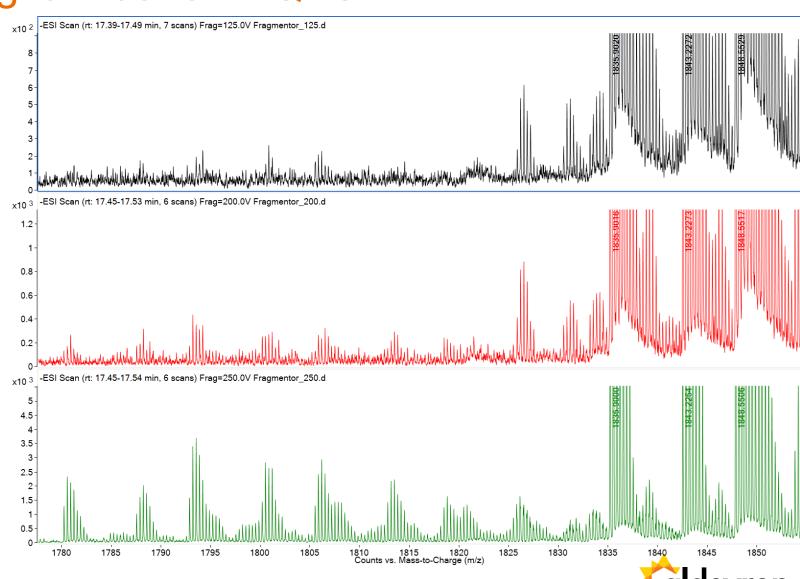
- Same GFP mRNA as with the QDa
- Initial runs of the spike recovery experiments were underwhelming

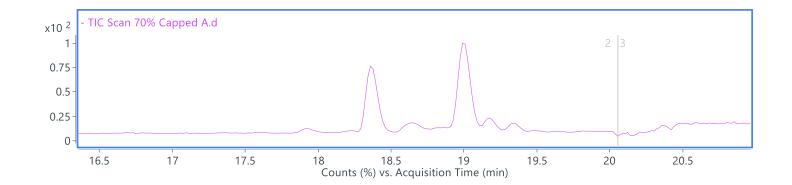
		Run 1	Run 2		
Sample name	%Purity	% Recovery	%Purity	% Recovery	
100% capped	84.1	100	90.9	100	
99% capped	81.4	97.8	88.7	98.6	
95% capped	74.7	93.5	81.9	94.8	
85% capped	55.8	78.1	64.2	83.1	
70% capped	37.7	64.0	41.5	65.2	

- Possible parameters to investigate
 - Bioconfirm software calculations
 - Selection and summation of charge states
 - Manually selected charge states and integrated XICs. No change
 - MS source parameters

- Agilent Jet Stream Technology (AJT)
 - Dual Stream AJT Source
- Started with Agilent's recommended source parameters for oligos
 - Nozzle Voltage: 1000
 - Capillary Voltage: (-)4000 V
 - Fragmentor Voltage: 225 V
 - Skimmer: 65 V

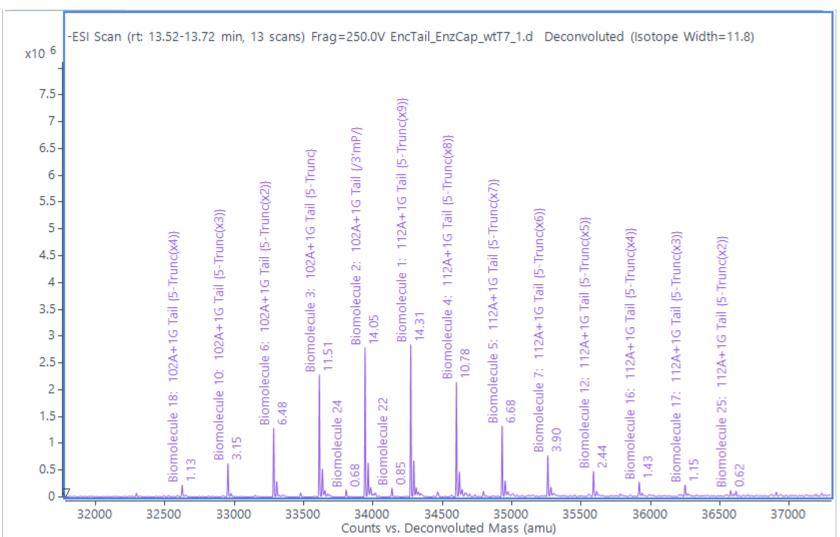

Figure adapted from Agilent


- After investigation of the mass spectra, we noticed lots of lower-than-expected m/z clusters. Also have significant K+ adducts
- Suspected fragmentation was occurring

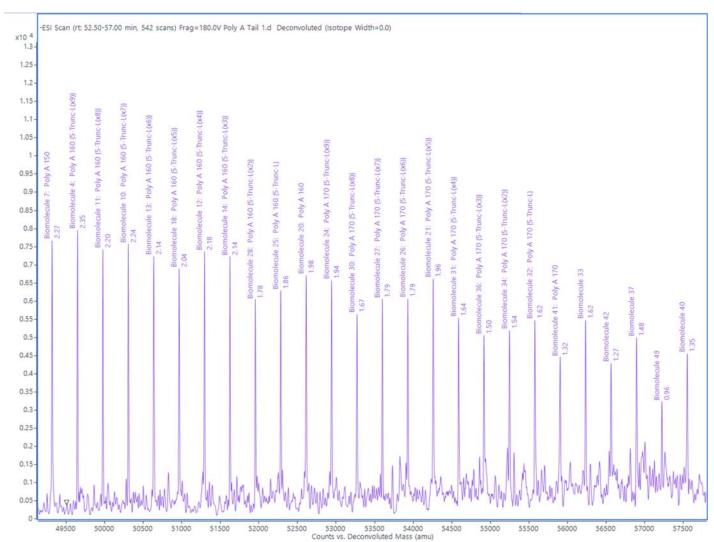
- After investigation of the mass spectra, we noticed lots of lower-than-expected m/z clusters. Also have significant K+ adducts
- Suspected fragmentation was occurring
- Saw the fragmentation was eliminated at FragV = 125V

- Now run triplicate digests on different days and run method
- Recoveries ranging from 99.4 – 80.9%
 - Appears to be a bias for uncapped material with drops in recovery appearing for the 85% and 70% capped samples
- %RSD <2% for each spike level
- %RSD <0.2% for the capped sample

	Run 1			Run 2	Run 3	
Sample name	%Purity	% Recovery	%Purity	% Recovery	%Purity	% Recovery
100% capped	87.5		87.3		87.2	
99% capped	84.7	98.7	84.6	98.9	85.0	99.4
95% capped	80.6	96.9	80.7	97.3	79.8	96.4
85% capped	66.1	88.9	68.0	91.7	68.1	91.9
70% capped	49.5	80.9	49.7	81.4	49.7	81.5


Bonus Poly(A) Tail Enzymatic vs Encoded

- Enzymatic poly(A) tails create a challenge for MS based analysis due to the broad poly(A) tail
 range and heterogeneity present inherently in enzymatic added tails
- Encoded tails are much less diverse and are more easily deconvoluted
- Method
 - Enzymatic tail dropoff with RNAse T1
 - Platform LCMS using IPRPLC gradient


Encoded Poly(A) Tail Analysis Example

- Method
 - Enzymatic tail dropoff with RNAse T1
 - Platform IPRPLC gradient
- Target 102As
- Distribution from 98-110 A with the most abundant length by peak area being 102A

Enzymatic Poly(A) Tail Analysis Example

- Method
 - Enzymatic tail dropoff with RNAse T1
 - Platform IPRPLC gradient
- Target 180As
- Distribution from 125-170As with the most abundant length by peak area being 140A

Summary

- We were able to show a 5' cap LCMS-based method which can provide valuable insights to capping efficiency for process development. Our method showed acceptable accuracy, linearity, and reproducibility on both a Waters QDa and an Agilent 6545XT QTOF.
- We also showed an accurate mass Proof-of-Concept LCMS-based poly(A) tail length and heterogeneity method, which can report median length and range for both encoded and enzymatically added tails.

Acknowledgements

- My Aldevron AMD Team
 - Wes Mosher
 - Sid Pradhan
 - Babak Mamnoon
 - Alexzandrea Woudenberg
 - Sheng Feng
 - Tajnin Sultana
 - Autumn Dinnel*
 - Anders Lund

