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Why use PAT (capacitance spectroscopy) in a bioprocess?

Traditional process without PAT

operator takes a
sample and goes to
the lab
10min

/]\ operator takes data to
control the control room
action ‘ 10 min

data is entered into the
digital control system
10 min

cample is analyzed
5 min - 2h

control strategy
design 10 min

Benefits of PAT

24|7 monitoring and control

Sample is not removed, reactor volume
is unaffected

Reduces operator interaction — lesser
risk of contamination, lowers operator
error

Earlier detection of cell physiological
changes (apoptosis, viral release)
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Capacitance - Principle of Measurement

Electronics controlling the electric field

ELECTRODES

ELECTRIC FIELD

VIABLE CELLS POLARIZE

DEAD CELLSHAVE A
DAMAGED MEMBRANE AND
DO NOT POLARIZE

Negative electrode

Cell plasma membrane

Positive electrode

Direction of the field ———

= Measurement of charge separation is capacitance — directly proportional to membrane-bound volume of cells
= Depends on number and size of cells, electrical properties of cell membrane
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Critical Frequency (Fc) provides insight into physiological cell state

As frequency is increased, capacitance decreases, forming a high — low plateau referred as the B-dispersion curve

I 1@ IQ = Critical frequency f, - midpoint of the 3-dispersion
curve, inversely proportional to cell size

AN

. Cell size State Expected
o

= Increase older non-dividing cells decrease
‘o Decrease/

4n] . q . ]

= shrinkage of cells early sign of apoptosis increase
&

: = Real time changes in Fc is seen during nutrient
: v v v , depletion, shear stress, and pH deviations in cell

5 55 5 6I 5 7 cultures
log frequency [Hz]
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Fc correlates with nutrient limitation in a batch process

Cell Line A Cell Line B
— 100 — 100 .
— Critical Frequency
F0 - 90 <™ Viability (%)
60 S 80 8 = Cells were not fed to
Glucose depletion = -70 induce nutrient limitation.
-40 = <
S S
- 20 | 50 » Fc increases with
0 6004——— 14 gl_ucose deplet!on ann.g
10 11 12 0o 1 2 3 4 5 6 7 8 with decrease in cell size
indicating apoptosis.
15— 8 12.2 -8 _m Glucose = Results indicate Fc can
Cell Size correlate with nutrient
3 @ 6 © limitation in real-time.
=3 c r
N ® 4 &
n ® —~
= f.: Q
S c 2L
——t0
6 7 8
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Application of LC-MS proteomics to detect the changes on the molecular level

el " Report

Identification (ID)

“Quantitation

Genedata <C\>
Trvosin Digest Thermo Scientific™ Thermo Scientific ™ Genedata Expressionist
yp J Vanquish UHPLC Orbitrap Exploris 480 SIEIE

Peptides




Statistical analysis by Analyst (v.18.5.0)

Genedata @

(O] Paralie! Plot

[ Tile Display

[] scatter Plot

[ Bar Charts

iy Correlation

14y Annotation Correlation
1y Correlation Circle

%28 Threshold Scan

%54 Correlation Network

%2 Annotation Network

{dh Histogram

hﬂ] Box Plot

il Global Distribution

Mh Principal Components
hﬂ] Partial Least Squares
il orthogonal PLs

@ Occupation Display

(&) Annotation Histogram
(@) Annotation Scatter Plot
< Filter by Valid Value Proportion
V Filter by Average Signal
Y Filter by Variance

Y Filter by Highest Change
Y Filter by Threshold Proportions

© 2024 Genedata | Confidential & Proprietary

Effect Size

2 Groups

&5 2 Groups Exact Test

&5 2 Groups Paired

&5 K Groups

&5 K Ordered Groups

B4 Absent/Present Search

&5 Contrasts

&) Fisher's Exact Test

&5 Proportional Change

£ Linear Model

£ Generalized Linear Model
5 Logistic Regression

£ Logistic Regression for Annotations
£ N-Way ANOVA

ﬁ Search by Distance

}@ Profile Distance Search

{2 Profile Shift Analysis

L_ Periodogram

{-. Trend Identification

{"» Kaplan-Meier Survival Curve
{* Multivariate Cox Regression
E Cox Regression (Per Row)
'lﬁ Hierarchical

‘ﬁ Divisive Hierarchical

ﬁg 2D Hierarchical

£ K-Means

4= som

£ Leaming

g Parameter Evaluation

2 Classification

ﬁ Cross Validation

% Ranking

4% Regression

4% Regression Cross Validation
4% Regression Ranking

& Gene Ontology Fisher's Exact Test

Analyst offers many data mining, data
visualization and statistics capabilities
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PCA and Global Distributions
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Statistical

models

|0. Search Groups

[ O All Rows
[ Stress case study

HERE

File Data Analyses | = Workflows  (li Results &4 Data Settings @
File Derivation Annotation
H| 2 E|HER |43 & Stress case study
|°. Search Groups |“z£ Q, Search Analyses - |d X
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References . "
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5 Filter

[, statistical Tests

£ Linear Models
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Linear Model ‘

&9 Edit Settings...
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Settings
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W reoctome

- Overrepresentation Analysis Results (P-value < 0.01)

@37
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T Event Hierarchy: H ’
® v Autophagy

® <% U Cell Cycle
%2 Cell-Cell communication

Cl

® <%, U Cellular responses to stimuli (2311,062) FDR: 3.87E-5 i
organization of RNA
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® % Circadian Clock
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Muscle Immune System
contraction ‘

) Programmed
Y DNA Replication Cell Cycle Cell Death

Drug ADME

® % Digestion and absorption -
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® % Y Gene expression (Transcription) Signal WMetabolism

® <% Hemostasis Developmental Trans&@n

jol ~— _— I i
® % Y |mmune System o - A Organelle
\ and maintenance
® <% U Metabolism ‘ Sensory
® <% U Metabolism of proteins ) ) Rercopton Protein

%2 Metabolism of RNA localization Extracellular

matrix organization
® <% Muscle contraction
® =% Neuronal System 0.05
a " =

® <% Organelle biogenesis and maintenance Neuronal System Aot Vesn;le-n::{;ated —

ans|
® =% Programmed Cell Death { ) of proteins )
® & . e - Gene Disease { .

Protein localization Hemostasis expression (Transcription) v, ; Cell-Cell

B Reproduction P 7 ’ « communication

® <% U Sensory Perception
=% U Signal Transduction
® % Transport of small molecules
® =5 Y Vesicle-mediated transport
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Overrepresentation analysis - Pathway Diagram (P-value < 0.01)
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Proteomics analysis reveals increased f_ in batch processes indicate cellular stress

Cell Line A Cell Line B

7 1 : _ P Pathway name

e ; ; ¥ — (Cellular responses to stimuli/ stress

*ﬁ 2* "1 . = ;; f}x Unfolded Protein Response (UPR)
o . ’ fﬁ 5‘? g ;‘E 3 Cytosolic tRNA aminoacylation
_§ u t,% i ?Z?Ef §: ATF6 (ATF6-alpha) activates chaperone genes
> + d‘% ff o ;; ij- g | IRE1alpha activates chaperones

R S gd, | e XBP1(S) activates chaperone genes

g | ] ! Mitochondrial unfolded protein response (UPRmt)

- =) - =]

1/1004
110
1004

=)
=]

171004
110

Cell Line A: Ratio (Day 3 vs Day 7) Cell Line B: Ratio (Day 3 vs Day 6)

= With f_ increase, 343 genes were upregulated in Cell Line A and 147
genes were upregulated in Cell Line B — 81 genes common
Cell Line A Cell Line B between the 2 cell lines (fold change >1.5 and p-value < 0.05).

262 66
D10 vs D7 vs D D6 VS D3 = Pathway analysis showed genes were associated with cellular

response to stress (nutrient deficiency).
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Increased Fc in perfusion and batch processes indicate cellular starvation

Cell Line A— TFF perfusion

— 100

- 90

- 80

—- 70

— 60

700
600 4
N
T 5004 nutrient
oo limitation
400 .
—— Critical Frequency
—— Viabilit
300 1117 1T 11 Iyl 1 11
0 2 46 81012141618202224 2628 30

Days

Cell Line B

Cell Line A

Cell Line A -
Perfusion
227

50

Pathway name

—— [Cellular responses to stimuli/stress

Signal Transduction

Metabolism

MTF1 activates gene expression

(%) Amaqelp

Response to metal ions

Regulation of MITF-M-dependent genes involved in lysosome
biogenesis and autophagy

Degradation of the extracellular matrix

— |Cellular response to starvation

Fc increases from baseline on D8 to D13 in TFF perfusion process similar to
batch process

14 genes common between TFF perfusion and batch processes across 2 cell
lines with increased Fc

Pathway analysis showed genes were associated with cellular response to

stress (nutrient deficiency and autophagy).
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Feeding strategy based on f_ improves TFF perfusion process performance

Critical Frequency (f.)

Viability (%)

Days
100
95+
90
854 —e— Variable VVD
—=— Control
80 111117 1T 11

| L
0 2 46 81012141618202224262830
Days

Cell Size (M)
3

= Maintaining f_ at baseline post
day 10 by increasing perfusion
flow rate improved overall

-o- Variable VVD

process performance

» Increased perfusion rate led to
younger dividing cells, higher
decreased VWD viability, and increased overall

/ titer

12 = Control
11IIIIIIIIIIIIII
0 2 4 6 81012141618202224262830
Days
5_
increased VVD
Chil
| ..
2 3
-
g 2+ —— Variable VVD
5 1- -=— Control
0 1 | 1 | 1 | 1 | 1 | 1 1

6 8 10 12 14 16 18 20 22 24 26 28 30

Days
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Real-time monitoring of shear stress in a perfusion process using f_

—— Control f; 120-
1200 1000 Control Viability 106 -~ Control
1000- 80 — Shear Stress f E ~®- Shear Stress
‘ = -+ Shear Stress Viability = 807
g | 60 % ear otress Vianllity g
i 8001 ¥ shear stress =9 = o 60
x g W
W 40 —~ = 40-
o o
600 S o
- 20 > 20-
400-
0 0 I 1 I I I I I |
I 1 I 1 I | I I
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Days Days
167 Control / = Shear stress induced by high recirculation rates (day 10) is
— 15 & Shear Stress // marked by a sharp increase in f, — decrease in VCD and viability
= 154
=
9 14 = Reduction in cell size on day 10, potentially due to an increase
» in lysed and apoptotic cells
8 13' /A—Hk’/ﬂ . . . . .
o [ shear stress = The recirculation rate was reduced, resulting in f; ultimately
I o returning to baseline levels
I | | | | |

T 1 1
0 2 4 6 8 10 12 14 16 18
Days €9 MERCK
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Real-time monitoring of pH deviation in a perfusion process using f,

7.4+
7.2
T 7.0
o
6.8_ i
6.6 -5 _ow pH
6-4 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Days
600 -3 100
550 80
N 60
= 500
. -40
450 L 20
400 I T | | 0
0O 2 4 6 8 10 12 14

Days

(%) Aupgelp

Control f;

Control Viability (%)

Low pH f;
Low pH Viability

120-
100

-o- Control
-~ Low pH

)
2

VCD (E6 cells/ml)
)
iy

)
<

0 2 4 6 8 10
Days

I
12 14

= pH deviation from the normal process — fc
changes in real time

= No significant drop in viability with pH deviation
but slower growth compared to control
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Conclusions

« Critical Frequency (f,) is a novel in-line feedback tool to:
v" Monitor upstream processes in real-time
v" ldentify and act on process deviations quickly in manufacturing environment

v Aid in process development and process characterization studies to develop robust upstream processes
« LC-MS proteomics workflow powered by Genedata Expressionist and Analyst is a valuable tool to:

v ldentify and quantitate the proteins that were upregulated during the process and Fc changes

v Confirm that changes in Fc reflected cellular response to stress on the molecular level

€9 MERCK
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