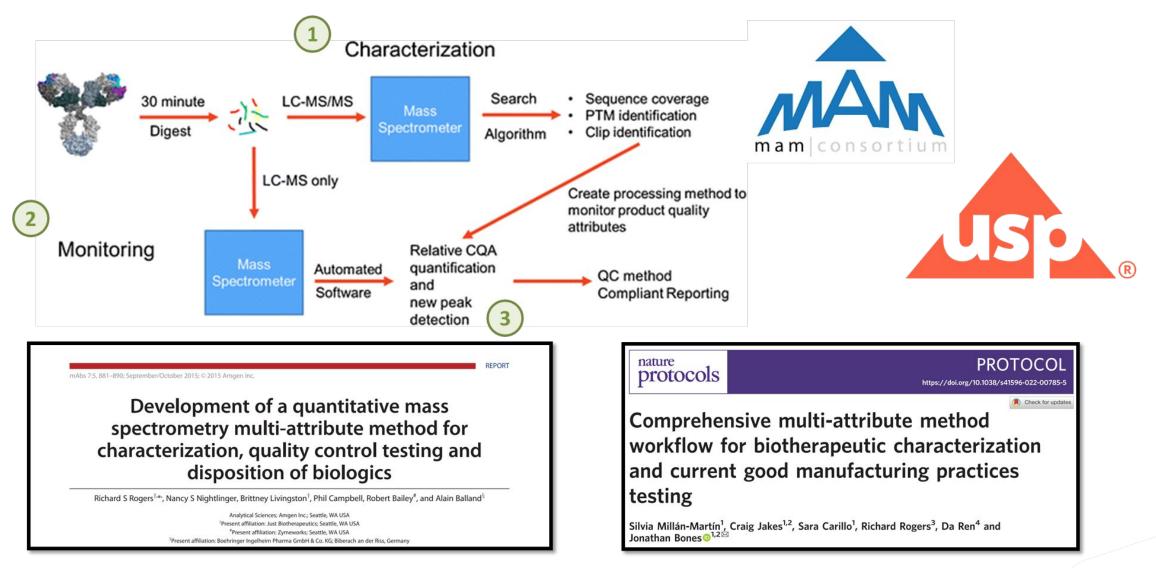


# Expanding MAM horizons beyond mAb-based therapeutics


Sara Carillo<sup>1</sup>, Silvia Millán-Martín<sup>1</sup>, Corentin Beaumal<sup>1</sup>, Anna Mulligan<sup>1</sup>,

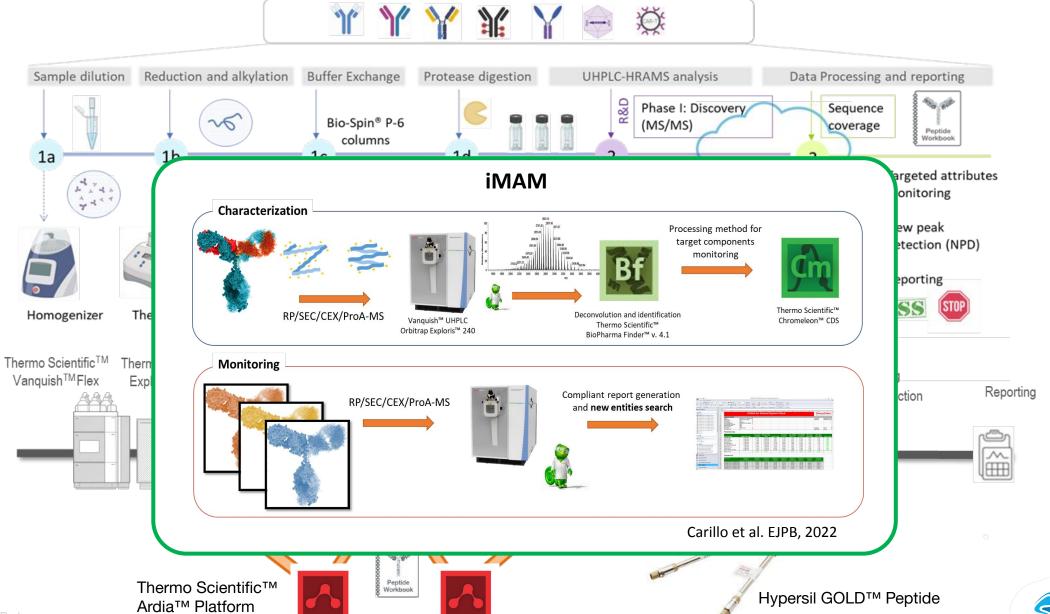
Kai Scheffler<sup>2</sup>, Cong Wang<sup>3</sup>, Ulrik Mistarz<sup>4</sup>, Ken Cook<sup>5</sup>, Jonathan Bones<sup>1,6</sup>

- <sup>1</sup>National Institute for Bioprocessing Research & Training (NIBRT), Dublin, Ireland.
- <sup>2</sup>Thermo Fisher Scientific, Germenring, Germany.
- <sup>3</sup> Thermo Fisher Scientific, Bremen, Germany.
- <sup>4</sup> Thermo Fisher Scientific, Allerod, Denmark.
- <sup>5</sup> Thermo Fisher Scientific, Hemel Hempstead, United Kingdom.
- <sup>6</sup> School of Chemical and Bioprocessing Engineering, University College Dublin, Dublin, Ireland

CASSS Mass Spec, Costa Mesa, CA, September 26<sup>th</sup> 2025

#### Multi-Attribute Method






#### Multi-Attribute Analysis vs Multi-Attribute Method

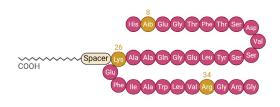
- 1. Deep knowledge of product under investigation
- 2. Tight control of analytical tools and sample preparation steps
- 3. Real-time, GxP compliant, reporting of selected PQAs
- 4. Confident detection of changes



# MAM Workflow @ NIBRT






### New challenges in Biopharma

1. Bringing bioanalysis into early-stage



2. New modalities



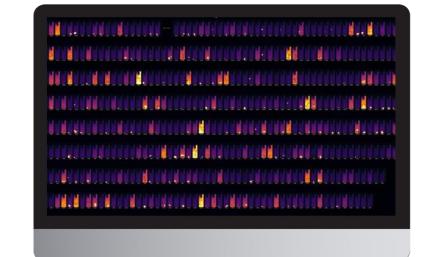


3. Sustainability goals (EU REACH Regulation)








### MAM in Early-Stage

Analytics are the bottleneck to accelerate drug and process development

- Long analysis
- Low high-throughput
- High sample demand

#### Points of concern to scale-down

- Dynamic range
- Sample loss
- Instrumentation

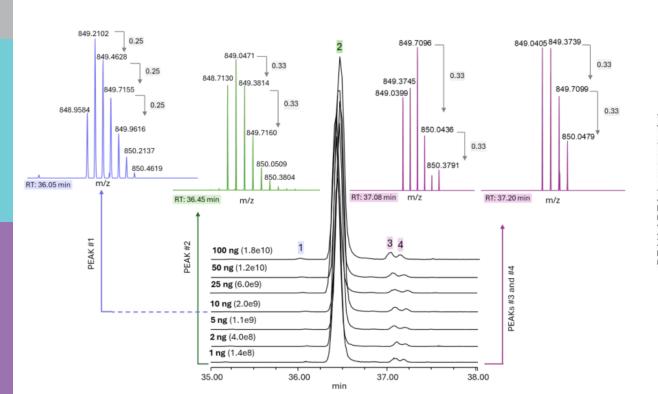






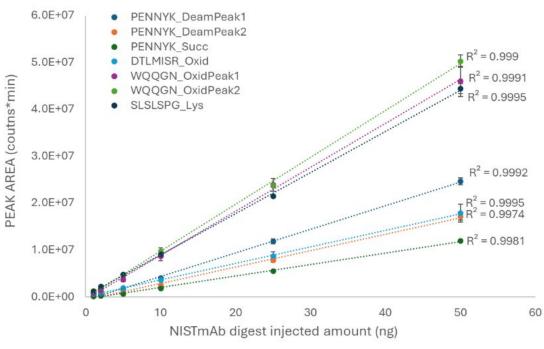


# **Exploring Dynamic range**









Lisa Strasser Anna Mulligan

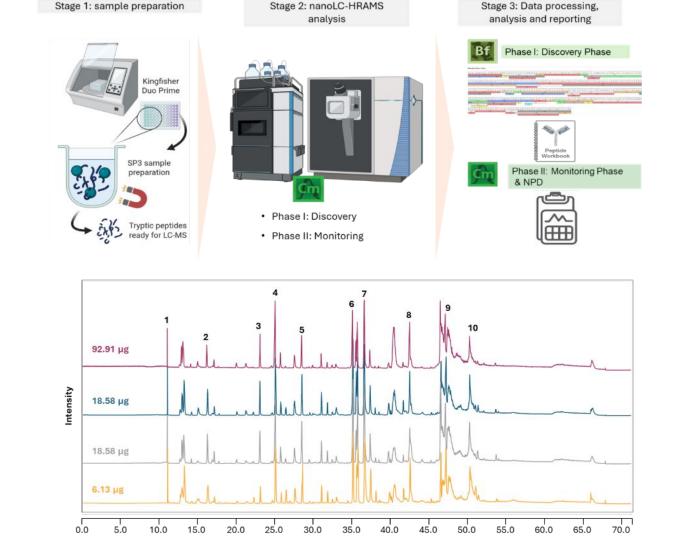
Silvia Millán-Martín



**PENNY** 

**PENNY** 



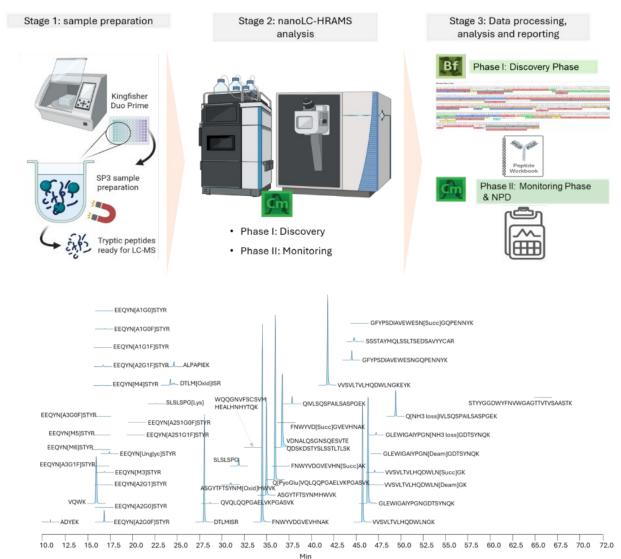

|              | K             | K             | PENNY        | DTLMIS       |               |               | SLSLSP       |  |
|--------------|---------------|---------------|--------------|--------------|---------------|---------------|--------------|--|
|              | Deam<br>Peak1 | Deam<br>Peak2 | K<br>Succ    | R<br>Oxid    | Oxid<br>Peak1 | Oxid<br>Peak2 | Lys          |  |
| Slope<br>(S) | 5.04E+0<br>5  | 3.51E+0<br>5  | 2.44E+0<br>5 | 3.53E+0<br>5 | 9.37E+0<br>5  | 9.97E+0<br>5  | 8.77E+0<br>5 |  |
| σ            | 1.36E+0<br>5  | 1.44E+0<br>5  | 6.58E+0<br>4 | 2.48E+0<br>5 | 4.38E+0<br>5  | 2.60E+0<br>5  | 1.66E+0<br>5 |  |
| $R^2$        | 0.9979        | 0.9950        | 0.9979       | 0.9856       | 0.9936        | 0.9980        | 0.9989       |  |

**WQQGN** 

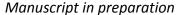
**WQQGN** 



#### MAM to assist clone selection

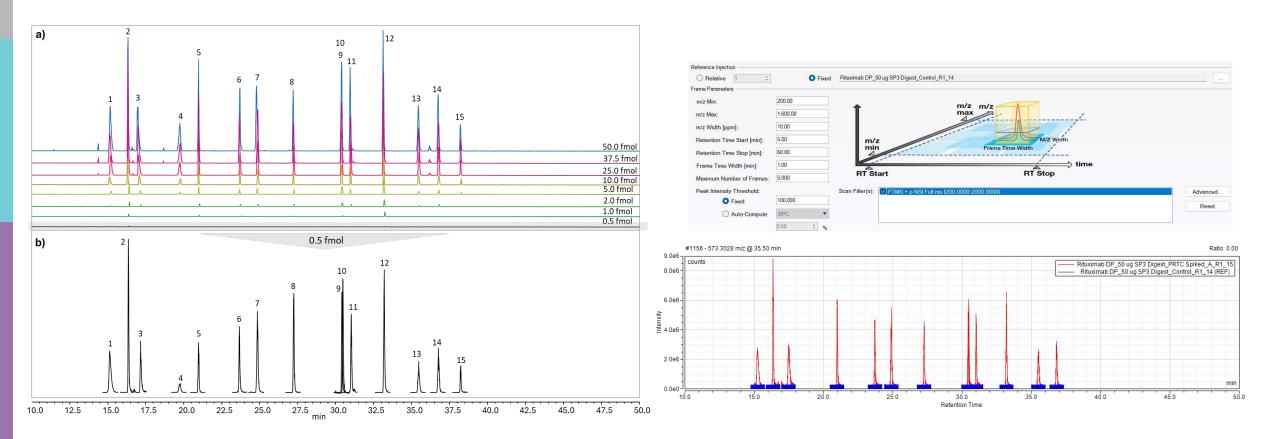



Based on data available in the lab, we investigated feasibility and transferability of MAM for IgG sample amounts produced by and high producing and low producing cell line cultured in 96-well plates.


Starting material was calculated based on specific productivity and cell densities at day 3 and day 5.



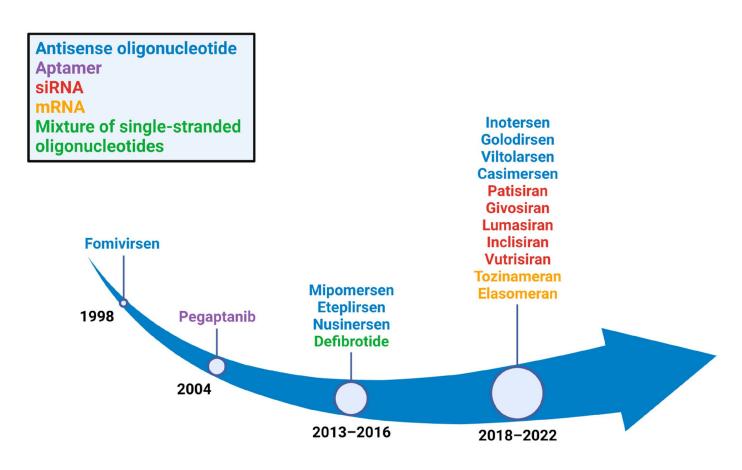
#### MAM to assist clone selection




| Peptide                                     | Description         | % PQA<br>(Avg.) | %CV<br>(PQA) |
|---------------------------------------------|---------------------|-----------------|--------------|
| DTL <b>M</b> <sup>256</sup> ISR             | Oxidation           | 4.49            | 5.08         |
| ASGYTFTSYN <b>M</b> ≃HWVK                   | Oxidation           | 2.62            | 5.88         |
| GLEWIGAIYPGNGDTSY <b>N</b> <sup>55</sup> QK | Deamidation         | 0.63            | 7.71         |
| GLEWIGAIYPGNGDTSY <b>N</b> 55QK             | Succinimide (N)     | 1.65            | 5.91         |
| FNWYVDGVEVH <b>N</b> <sup>290</sup> AK      | Succinimide (N)     | 0.11            | 14.35        |
| FNWYV <b>D</b> <sup>284</sup> GVEVHNAK      | Succinimide (D)     | 0.22            | 11.89        |
| VVSVLTVLHQDWL <b>N</b> 319GK                | Deamidation         | 0.46            | 11.79        |
| VVSVLTVLHQDWL <b>N</b> 319GK                | Succinimide         | 1.50            | 11.45        |
| GFYPSDIAVEWES <b>N</b> GQP <b>ENN</b> YK    | Succinimide         | 0.94            | 7.01         |
| SLSLSP <b>G</b> <sup>449</sup>              | C-term Lys          | 7.31            | 4.04         |
| <b>Q</b> 'VQLQQPGAELVKPGASVK                | N-term PyroGlu (HC) | 99.31           | 0.03         |
| <b>Q</b> ¹IVLSQSPAILSASPGEK                 | N-term PyroGlu (LC) | 80.94           | 1.10         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A2G0F               | 56.56           | 2.31         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A2G1F               | 11.66           | 4.62         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A1G0F               | 5.40            | 3.64         |
| EEQY <b>N</b> 301STYR                       | A2G2F               | 0.99            | 5.68         |
| EEQY <b>N</b> 301STYR                       | A1G1F               | 0.61            | 2.99         |
| EEQY <b>N</b> 301STYR                       | A2G0                | 0.60            | 9.63         |
| EEQY <b>N</b> 301STYR                       | A2G1                | 0.30            | 9.80         |
| EEQY <b>N</b> 301STYR                       | A1G0                | 0.37            | 5.66         |
| EEQY <b>N</b> 301STYR                       | M3                  | 4.74            | 2.42         |
| EEQY <b>N</b> <sup>301</sup> STYR           | M4                  | 1.75            | 4.72         |
| EEQY <b>N</b> <sup>301</sup> STYR           | M5                  | 3.66            | 4.93         |
| EEQY <b>N</b> <sup>301</sup> STYR           | M6                  | 0.40            | 4.32         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A3G0F               | 0.09            | 6.27         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A3G1F               | 0.04            | 8.92         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A2S1G0F             | 0.18            | 7.93         |
| EEQY <b>N</b> <sup>301</sup> STYR           | A2G1S1F             | 0.16            | 19.34        |
| EEQY <b>N</b> <sup>301</sup> STYR           | Unglycosylated      | 12.87           | 7.81         |





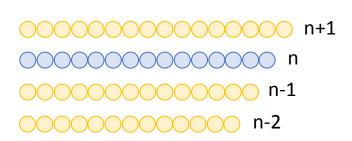

#### MAM to assist clone selection

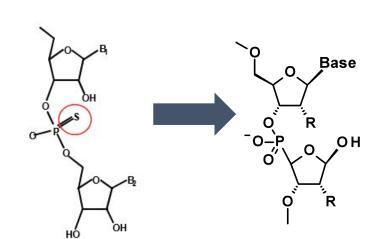


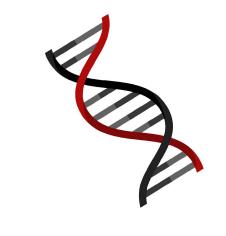
NPD was also explored spiking different amounts of PRTC mix. All 15 peptides were detected down to 0.5 fmol (in a 25 ng injection) by lowering intensity threshold for the non-targeted MS search.

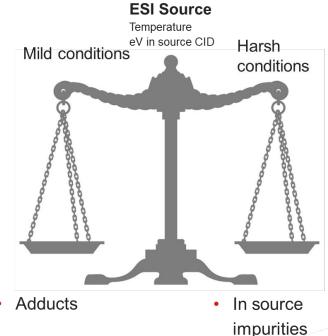
### **Antisense Oligonucleotide Therapeutics**

Antisense oligonucleotide (ASO) therapy uses short, synthetic strands of modified DNA-like molecules to target and alter messenger RNA (mRNA), thereby changing protein production to treat diseases



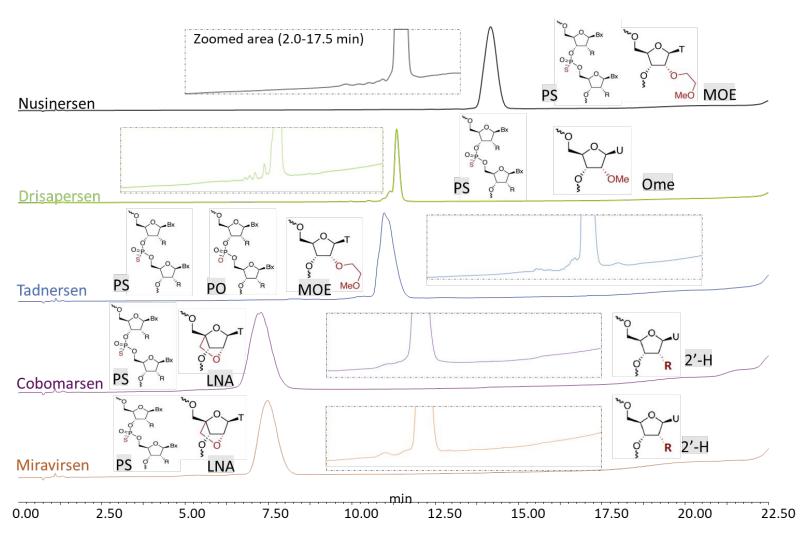


Adapted by Jun Jo et al. Int. J. Mol. Sci, 2023





# **Antisense Oligonucleotide Therapeutics**

- Synthesis imperfections (n-1, n-2, n-x, n+1, n+2)
- Sequence verification with modifications
- PO impurity from PS modification Could be any of the positions
- Deamidation
- Oxidation
- Depurination
- Protection impurities












### **ASO Therapeutics**



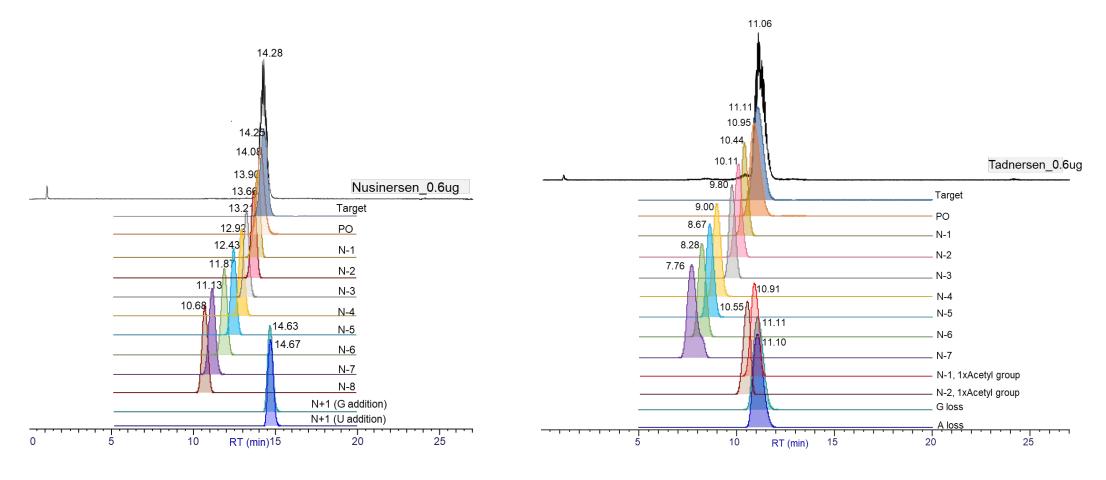


Silvia Millán-Martín



Felipe Guapo Melo

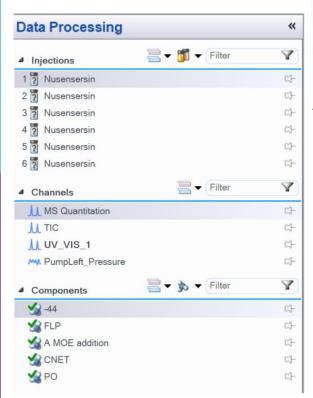


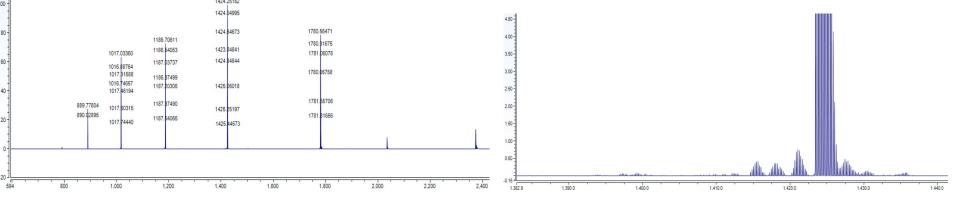

Ken Cook

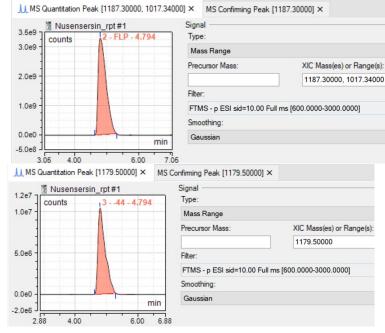


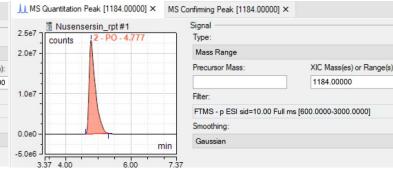
Ulrik Mistarz

IP-RP-MS/MS analysis using HFIP and PA using DNAPac RP column and Orbitrap Exploris 480


### **ASO Therapeutics**





Deconvolution with Sliding Window allows to process Full MS data to obtain accurate quantitation of impurities with up to 0.1% abundance even for non-fully resolved peaks.




# **ASO Therapeutics: Compliant reporting**

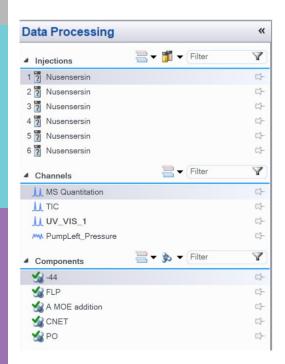




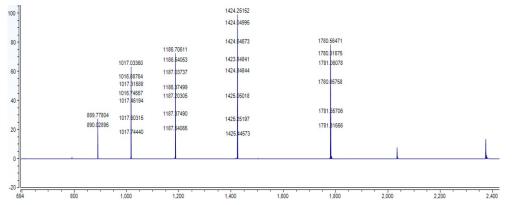


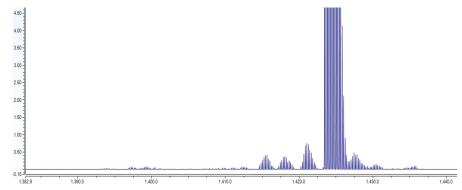






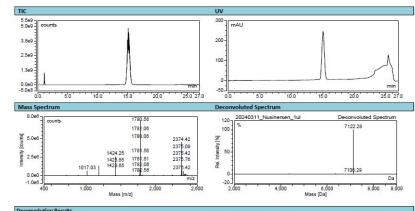



# **ASO Therapeutics: Compliant reporting**



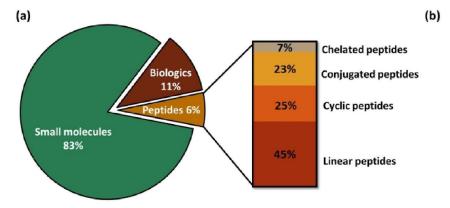


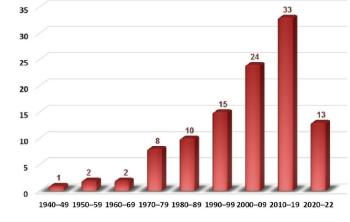




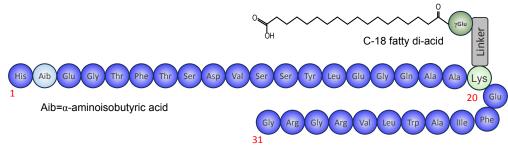

| Identification Summary                                |                            |                   |  |  |  |
|-------------------------------------------------------|----------------------------|-------------------|--|--|--|
| Injection Details                                     |                            | 1111/05           |  |  |  |
| Sequence Name: 20250127_OligoFocusGroup_Report        | Sequence created date:     | 27-Jan-2025 14:19 |  |  |  |
| Sequence Directory: Instrument Data\Oligo Focus Group | Sequence created operator: | ulrik.mistarz     |  |  |  |
| Sequence Data Vault ChromeleonLocal                   | Sequence updated date:     | 12-Mar-2025 17:10 |  |  |  |
| Number of Injections: 11                              | Sequence updated operator: | ulrik.mistarz     |  |  |  |

| Deco | Deconvoluted mass overview        |           |                           |               |            |                        |                     |                         |                |  |
|------|-----------------------------------|-----------|---------------------------|---------------|------------|------------------------|---------------------|-------------------------|----------------|--|
| No.  | Injection Name                    | Inj. Pos. | Target<br>Tolerance<br>Da | Expected Mass | Identified | Measured<br>Mass<br>Da | Delta<br>Mass<br>Da | Mass<br>Accuracy<br>ppm | Abundance<br>% |  |
|      | 1 20240311_Inotersen_1ul          | G:A1      | 0.100                     | 7178.056      | V          | 7178.068               | 0.012               | -1.6                    | 74.19          |  |
|      | 2 20240311_Nusinersen_1ul         | G:A2      | 0.100                     | 7122.276      | ~          | 7122.283               | 0.007               | -0.9                    | 88.54          |  |
|      | 3 20240311_Lumasiran_1ul          | G:A3      | 0.100                     | 7627.145      | ~          | 7627.167               | 0.022               | -2.8                    | 47.91          |  |
|      | 4 20240311_Mipomersen_1ul         | G:A5      | 0.100                     | 7172.092      | ~          | 7172.105               | 0.014               | -1.9                    | 80.51          |  |
|      | 5 20240311_Custirsen_1ul          | G:A8      | 0.100                     | 7340.993      | ~          | 7341.002               | 0.009               | -1.3                    | 77.19          |  |
|      | 6 20240311_lonisMAPTRx_1ul        | G:A9      | 0.100                     | 6426.056      | ~          | 6426.060               | 0.005               | -0.7                    | 80.50          |  |
|      | 7 20240311_GIVOSIRAN_1ul          | G:B1      | 0.100                     | 8732.021      | ~          | 8732.050               | 0.029               | -3.3                    | 38.12          |  |
|      | 8 20240311_Inclisiran_1ul         | G:B2      | 0.100                     | 7694.201      | ~          | 7694.214               | 0.013               | -1.6                    | 43.92          |  |
|      | 9 20240311_Eterplisen_pos3500     | G:A4      | 0.100                     | 10300.589     | ~          | 10300.588              | -0.001              | 0.1                     | 58.40          |  |
|      | 10 20240311_Goladersen_pos3500    | G:A7      | 0.100                     | 8642.963      | ~          | 8642.977               | 0.014               | -1.6                    | 48.21          |  |
|      | 11 20240311 Rovanersen 1ul repeat | G:A6      | 0.100                     | 6612.853      | ~          | 6612.852               | -0.001              | 0.1                     | 71.73          |  |

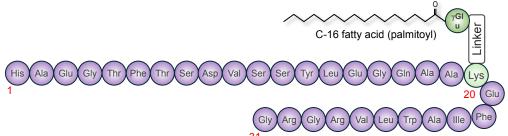




| Component<br>Number | Measured<br>Mass | RT    | Delta Mass | Identification   | Theoretical<br>Mass | Mass<br>Accuracy | Mass<br>Accuracy | Intensity | Fractional<br>Abundance | RRT   |
|---------------------|------------------|-------|------------|------------------|---------------------|------------------|------------------|-----------|-------------------------|-------|
|                     | Da               | min   | Da         |                  | Da                  | Da               | ppm              | counts    | %                       | min   |
| 1                   | 7122.283         | 15.08 | 0.007      | Target           | 7122.276            | -0.01            | -0.9             | 1.70E+7   | 88.54                   | 0.00  |
| 2                   | 7106.289         | 14.95 | -15.987    | PO               | 7106.206            | -0.08            | -11.7            | 3.49E+5   | 1.82                    | -0.13 |
| 3                   | 6335.149         | 14.52 | -787.127   | N-2 (UC)         | 6335.146            | 0.00             | -0.5             | 1.75E+5   | 0.91                    | -0.56 |
| 4                   | 4356.817         | 11.85 | -2765.460  | N-7 (UCACUUU)    | 4356.806            | -0.01            | -2.4             | 1.44E+5   | 0.75                    | -3.23 |
| 5                   | 5932.077         | 14.02 | -1190.199  | N-3 (UCA)        | 5932.066            | -0.01            | -1.8             | 1.28E+5   | 0.67                    | -1.06 |
| 6                   | 7250.409         | 15.35 | 128.133    | PA+ACN           | 7250.492            | 0.08             | 11.4             | 1.24E+5   | 0.65                    | 0.27  |
| 7                   | 7078.262         | 15.05 | -44.014    | 2'-O-methyl loss | 7078.256            | -0.01            | -0.8             | 1.17E+5   | 0.61                    | -0.03 |



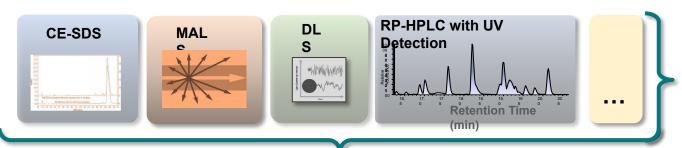

# Peptide Therapeutics: GLP-1 agonists

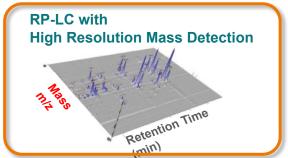
- GLP-1 receptor agonist therapeutic peptides have emerged to become some the world's largest selling drugs.
- peptides from different vendors analyzed by LC-MS using simple linear gradients of water and acetonitrile containing formic acid.



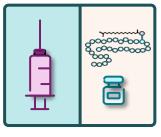



Drug Discovery Today 28, 103464 (2023)





#### Semaglutide




|                     | Semaglutide                                                       | Liraglutide                                                       |  |  |
|---------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| М                   | 4111.1143                                                         | 3748.9459                                                         |  |  |
| m/z, z=+2           | 2056.5644                                                         | 1878.4802                                                         |  |  |
| m/z, z=+3           | 1372.3787                                                         | 1250.6559                                                         |  |  |
| m/z, z= +4          | 1028.7859                                                         | 938.4898                                                          |  |  |
| chemical<br>formula | C <sub>187</sub> H <sub>291</sub> O <sub>59</sub> N <sub>45</sub> | C <sub>172</sub> H <sub>365</sub> O <sub>51</sub> N <sub>43</sub> |  |  |
| modifications       | Lys20:<br>C18 diacid γ-Glu (AEEA) <sub>2</sub>                    | Lys20:<br>C16 palmitoyl γ-Glu                                     |  |  |
|                     | AEEA: 2-(2-(2-<br>aminoethoxy)ethoxy)<br>acetic acid              |                                                                   |  |  |

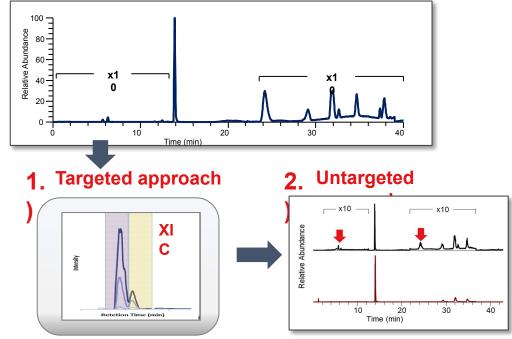






Multiple workflows are required for quality control of GLP-1 analogs




GLP-1 analog

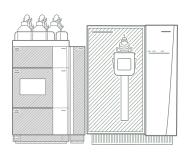


Peptides with and without modifications

Sum of all species = product quality attributes (PQA)

Peptides are separated with LC and detected with MS




Impurity Quantitation New

**New Peak Detection (NPD)** 

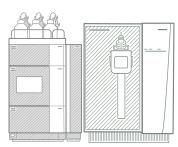


#### Characterization

#### **Impurity Monitoring & New Peak Detection**



#### STEP 1:


Product characterization with MS/MS

- Unambiguous sequence confirmation
- Identification of amino acid modifications and sequence truncations
- STEP 2:



 Generation of target list in target workbook format





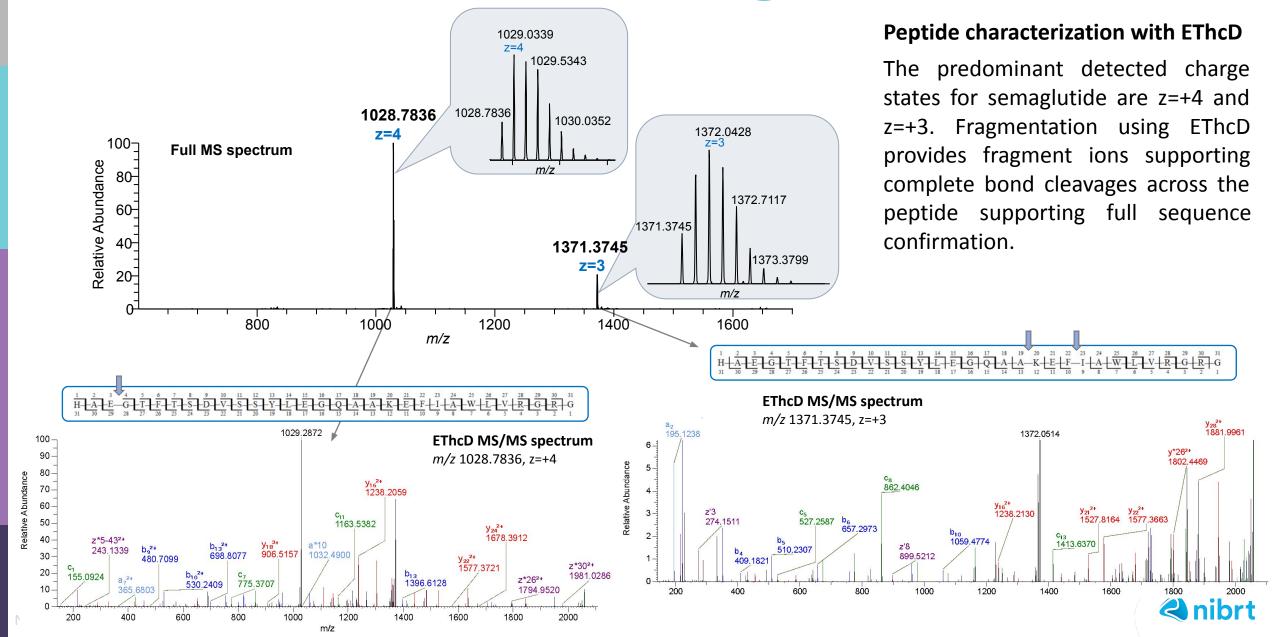
#### STEP 3:

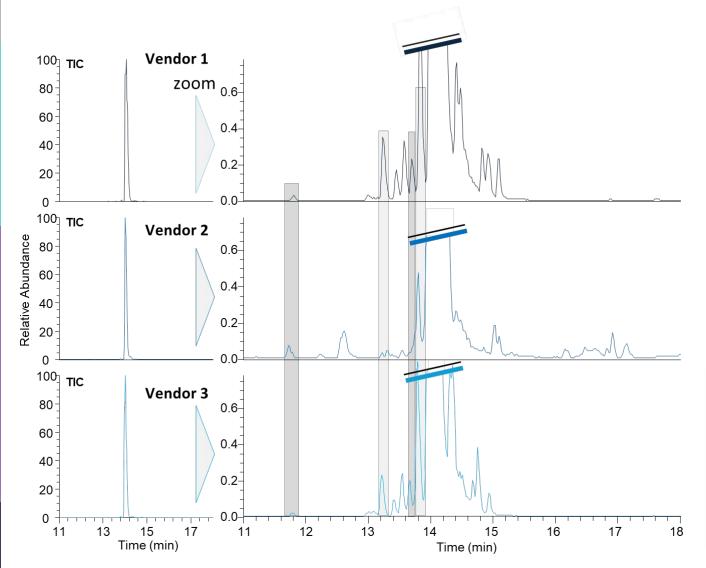
Monitoring of known modifications

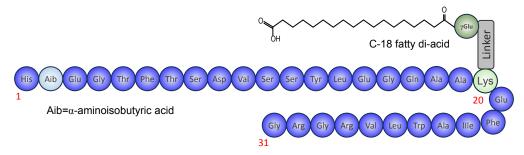
Quantitative assessment

• STEP 4:



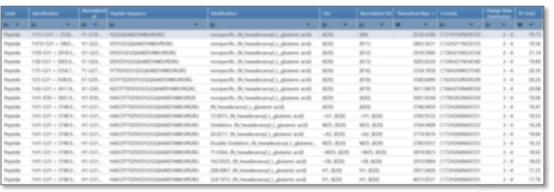




New Peak DetectionAssessment for

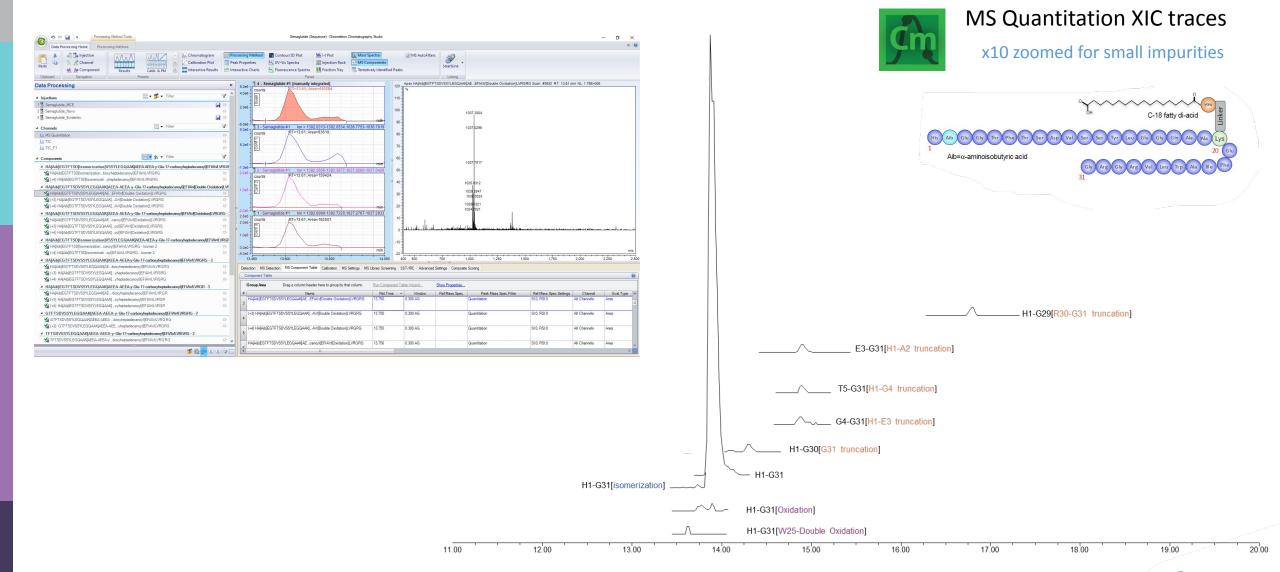

unkwnown/unanticipated species










Simplified report output using targeted peptide workbook for data processing









#### Conclusions

• MAM potential goes beyond QC environment and can facilitate biotherapeutics production for the whole life cycle.

• New modalities and sustainability goals are bringing new analytical challenges, but improved instruments and workflow robustness can accelerate method transfer in routine analysis to improve drug safety at any production scale and stage.

• MAM approach has huge potential for analysts with little MS expertise even outside industrial settings (regulatory agencies, law enforcement).



# Acknowledgments



- Silvia Millán Martín
- **Corentin Beaumal**
- **Anna Mulligan**
- Felipe Guapo Melo
- **Jonathan Bones**

- **Kai Scheffler**
- **Cong Wang**
- **Catharina Crone**
- **Kelly Broster**
- **Ken Cook**
- **Ulrik Mistarz**



Bioprocessing Research and Training



The world leader in serving science

