

Mark R. Chance

Center For Proteomics & Bioinformatics Case Western Reserve University Chief Scientific Officer, Neo Proteomics.

Hacking Structural Biology for Drug Discovery Using Mass Spectrometry

Declared Conflict: CWRU technologies for footprinting and systems biology are licensed to Neo Proteomics Inc. where MRC is a shareholder and officer. MRC also serves on the Science Advisory Board of GenNext Technologies

Drug Discovery & Development

Bin Deng et al., Analytica Chemica Acta, 2016

Proteomics: a key enabling technology for structural & systems biology mpvlsrprpw...

Proteomics From Molecules to Man

Structure & Dynamics of Macromolecular Complexes

Gavin et al. Nature, 2002 (Cellzome)

Turn, Turn, Turn Advantages and Limitations of Major Structural Biology Techniques

Resolution, size, and limits on amounts of material are approximate for 10-100K protein sizes.

Technique	Size (sample state)	Resolut- ion Limits	Amounts	Notes
NMR	<100 kD (solution)	~3-4 Å	µmoles/ milligrams	Requires labeled recombinant protein, disordered regions can be observed but may not be assigned.
Crystallo- graphy	Limited by crystal quality	< 1-3 Å	µmoles/ milligrams	Mutant constructs necessary for many membrane proteins, disordered regions invisible. Gold standard for structural water
Cryo-EM: Single particle	>100 kD (vitrified ice)	Mostly >3 Å	nanomoles/ µgrams	Resolution and size limits improving, best samples have symmetry, disordered regions invisible.
Cryo-EM: Tomo- graphy	Cells or tissues)	30-40 Å	thin sections/ individual cells	Resolution improving; captures large-scale spatial organization in cells.
SAXS	> 10 kD (solution)	> 20 Å;	nanomoles/ µgrams	Native material can usually be used, (similar to FP samples)
Footprinting: HRF-MS [and HDX- MS]	HRF-MS: No limit [<100K for HDX] (solution)	Peptide to single- residue (single base for NA)	picomoles/ nanograms	Native material can usually be used (both), absolute surface area can be estimated (HRF), disordered regions visible (HRF). Studies in cells/tissue possible (HRF).

CWRU at NSLS-II

MS-Footprinting/HDX •Local conformation change •Binding interfaces A Structural Biology Village

High-Resolution Structure & Models (Cryo-EM, & MX) •Medium to High resolution •Local and global Integrative Approach to Structure Determination

Small Angle X-ray Scattering/EM/ Native MS •Global Conformation •Large Complexes •Identity & Stoichiometry

Computational Approach •Homology Modeling •Docking •Molecular Dynamics Other Biophysical Data •Crosslinking, mutagenesis

CSB at National Synchrotron Light Source-II

NSLS-II Floor Area

FMX, AMX Crystallography

XFP Footprinting

Center for Synchrotron Biosciences

Albert Einstein College of Medicine

U NOVARTIS

Center for Proteomics and Bioinformatics (2005) Center for Synchrotron Biosciences (1994)

What is Footprinting?

- Chemical alteration of a macromolecule in solution
 - Sensitive to surface accessibility
 - Identifies binding sites
 - Nucleic Acids Footprinting:1970
 - Protein Footprinting: 2000s
 - Hydroxyl radical #1 reagent

Thirty Years of Synchrotron Footprinting Development

Beamline	Years	Key Outcomes	Graphic/Notes	Key Papers
NSLS X19C	1995-1996	Proof of concept as General User	(A) 	JMB 1997
NSLS X9A	1996-1999	Time-resolved RNA footprinting		Science 1998
NSLS X28C	2000-2014	Protein footprinting (steady-state and time- resolved). Focusing mirror innovation.	a Tas transformed c c c c c c c c c c c c c c c c c c c	PNAS 2009 Nature 2014
ALS (5.3.1 /3.2.1)	2014-2016	Technology and equipment. Mirror and new continuous flow methods.		Comm. Biology 2022
NSLS-II 17- BM	2016-2024	Ultra-high flux density / high-throughput methods	Revenue of the second s	Cell 2019
NSLS-II 17- BM	2024-2029 Proposed	Continued innovation (Multiplex chemistry/direct dosimetry/MS onsite)	The second secon	

OH radicals also produced by: Photolysis/Fenton/Plasma

https://www.bnl.gov/nsls2/beamlines/highlights.php?q=17-BM

GenNext FOX[™] Flash Oxidation Technology

- FOX system has photolysis by high energy plasma lamp.
- Peroxide and sample mixing automatic
- Real-time radical dosimetry determines effective radical yield and enables adjustment for scavenging.
- Product collector provides for automated collection of labeled protein

Benchtop to Beamline supported ecosystem

https://gnxtech.com

Molecular Footprinting of Proteins

Complementarity of Footprinting Approaches

- HDX unsurpassed for assessing protein backbone secondary structure in solution (vs NMR). Drawbacks include size limitations due to need for pepsin cleavage, structural resolution at peptide level. Can use conventional ion-trap instruments.
- Covalent labeling reports solvent accessibility at side chain level resolution, large or complex macromolecules and membrane proteins feasible, many proteases and chromatographic methods. Requires Hi-res instruments.
- Standard protocols are at peptide level

MEDIUM- RESOLUTION FOOTPRINTING STRATEGY

Peptide level analysis

Courtesy of Sichun Yang

Mass Spectrometry for epitope mapping and structure assessment of mAbs

- Antigen epitope mapping by structural mass spectrometry provides novelty and patentability of for mAb substance.
- IP protection can both uniquely establish IP relevant to antigen binding motif and/or block competitors.
- Paratope mapping important for reengineering antibody

Sandercock and Stroz, Nat. Biotech., 2012

Structure assessment/epitope mapping

Enhancing Structural Resolution of PF with chemistry

Reagent chemistry	Principal target residues	Mass shifts
OH radical	Aliphatic, aromatic, Met, Cys	Aliphatic: +16, +14 Aromatic/sulfur containing: +16, +32, +48 Arg: +16, -43; Asp, Glu: +16, -30; His: +16, +5, -22
EDC/GEE	Asp, Glu, C-terminus	+57, +85
Methylene carbene	All residues, minimal specificity	Variable (+14 methylene addition)
Carbethoxy	His, Lys, Tyr, Ser, Thr, Cys	+72

Typically Up to 20% of residues labeled

Kiselar & Chance, Ann. Rev. Biophys. (2018)

CF3-OH Multiplex Chemistry

Cheng et al, JASMS, 2020; Jain et al, Anal. Chem. 2022; Farquhar, BBRC, 2023

HIGH-RESOLUTION FOOTPRINTING STRUTEGY

Residue level analysis

Chemokine (CXCL12) signaling in 7TMs (ACKR3) occurs through conserved paths mediated by structural waters

Binding Epitopes of Chemokine Signaling: SDF-1 and CXCR7

Salanga, et al. J. Biol. Chem., 2014, and Gustavsson et al., Nat. Comm., 2017

Calmodulin Structure Assessment

Structurally aware experimental design

Single residue resolution epitope protection map using HRPF

Antigen protein surface representation showing detected residues color coded by PR value. PR of 1.2-1.4 (purple), PR 1.4-1.9 (blue) and PR ≥ 2.0 (red).

Residues in white have PR < 1.2. The identified "patch" of protections reveals a conformational epitope

NeoProteomics

SOTA Applications of Footprinting: Inhibition of the prostaglandindegrading enzyme 15-PGDH potentiates tissue regeneration

Zhang et al., Science, 2015

Understanding the basis for nanomolar binding of SW2109415 using footprinting driven structural analysis

S138

Huang W, et al. Nat Commun. 2023

SOTA Applications of Footprinting in Industry: Ternary complex formation of GABARAP binding to the FLCN/FNIP binary complex activates mTOR: Drug development in autophagy

Goodwin et al., Sci. Advances, 2021

Mapping the GABARAP ternary complex interaction sites

Modeling GABARAP protections on cryo-EM structure of FLCN-FNIP binary complex.

FCGHORN® THERAPEUTICS

Drugging Undruggable Mega-Complexes

BAF COMPLEX AND ASSOCIATED TRANSCRIPTION FACTORS

28 Chromatin Remodeling complexes and >1,000 TFs BAF Complex Subunits Mutated and Dysregulated in Cancer Estimate >100 Transcription Factors Associated with BAF Complex

TF interactions with chromatin remodelers

TFs are implicated in a range of cancers and other diseases. Historically difficult to target-featureless and tightly bound to DNA

Novel approaches to drug transcription factors: including small molecules or degraders

Mass Spec Footprinting: Survey BAF and TF surfaces

Biophysical, Structural and Biochemical confirmation of target interactions

XTAL/NMR

Crotonylation of histones is read specifically by Double PHD (DPF) fingers of MOZ and DPF2

Xiong et al., Nat. Str. Biol., 2016)

DPF domain of BAF45D binds to Histone H3(1-25) K14Cr

Full BAF Binds H3K14Cr at BAF45D PHD 1 and PHD 2 sequences

Histogram shows labeling of 177 peptides on BAF and complex out of 630 total detected (63% coverage)

Residues shown in contract with crotonly peptide modeled from MOZ domain homolog

Reveals Novel contacts with BRG/BRM

Martinez, AACR 2022

Conclusions: Hack Your Structural Biology Problems with SMS

Footprinting and Structural Mass Spectrometry Provides Actionable High-Resolution Information optimized for:

- Antibody-Antigen interactions
- Protein Degraders and Molecular Glues (modest binding affinity)
- Protein-small molecule interactions
- Mega Complexes in Gene Trafficking and Metabolism

FCGHORN[®] THERAPEUTICS

Thanks to all the team members!

