•2 Alnylam*

Development of a Rapid and Automated, Compliance Ready Workflow for Full Sequence Coverage of RNAi Therapeutics

CASSS Mass Spec 2023

Jennifer M. Nguyen, PhD 06-September-2023

Agenda

- Background
 - Antisense and RNAi
 - ICH (and CMC) Specifications and Considerations
 - Current methods and workflows
- Software and Data Processing Options
- Method Considerations
- Considerations for Implementation into GMP / QC Environment
- Summary and Future Work

INAI RNAI Pathway and siRNA Evolution

From the Liver to the CNS

3

Cantley, W. CHDI-2023 presentation. https://capella.alnylam.com/wp-content/uploads/2023/04/Cantley_CHDI-2023.pdf CONFIDENTIAL Brown, K., et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates, Nature Biotechnology 2022.

Identification by Sequence Confirmation

Referenced Figures from D'Ascenzo, LI, et al. *Nature Communications* (2022), and Waters CONFIRM Sequence Application

 All sequence confirmation methods verify the sequence of the oligonucleotide based on the common McLuckey notation (forward and reverse ion fragments) and use either fragment precursors or deconvoluted masses to identify monomers.

Methods – Deconvoluted MS Fragment Matching

Referenced Figure from M. Kretschmer et al. Analytical Biochemistry (2010)

Scoring systems vary between different software / processing methods and need to be validated for use in GMP and QC environments.

Swap sequences (synthesized or in silico) are implemented for validation.

5

Software for Sequence Confirmation

- Instrument companies now have many different software available for semi-automated or automated sequence confirmation.
- Here, we evaluated one software (CONFIRM sequence) to assess the ease of use for GMP compliance.
- We assess this software's capability in:
 - 100% sequence coverage of the FLP
 - Sequence coverage not confirmed / less than 100%, or with a lower score, for swap sequences (synthesized or in silico)

7 CONFIDENTIAL Desai, A., Bakris, G. L., et. Al. Zilebesiran, an RNA Interference Therapeutic Agent for Hypertension. N Engl J Med 389; 3, July 2023.

CONFIRM Software and Processing Method

Figures from CONFIRM Software, Developed by Waters Corporation

More "semi-automated" as data still needs to import to CONFIRM.

Create New Method

ease supply a name	
ease supply a name	
Description	
Mass error (ppm)	
Cross-spectrum confirmation	1
Intensity cutoff (counts)	The intersection and union for an isotope peak match
Isotope intensity ratio cutoff (%)	¥
Isotope similarity cutoff (%)	
	3-

🖌 Alnylam

Zilebesiran Antisense (AS) Sequence Confirmation

5'

100% Sequence Coverage

3'

Spectrum	Retention time window (min)	Acquisition details	Precursor observed mass (Da)	Charge state	% Precursor	% Coverage	Dotmap
QCN AGT01 AS modified method Jun 02, 2022 AGT01 AS LIMS 9097 1087.3 1: TOF MSMS 1087.2>(200-2500) 26eV ESI-	3.35 - 3.65	MS/MS Jun 02, 2022 15:30:51 (+00:00)	7,614.1263	7-	32.25	69.57	•••••
QCN AGT01 AS modified method Jun 02, 2022 AGT01 AS LIMS 9097 1268.1 1: TOF MSMS 1268.6>(200-2500) 30eV ESI-	3.35 - 3.65	MS/MS Jun 02, 2022 15:41:40 (+00:00)	7,614.1264	6-	39.46	78.26	••••••••••
QCN AGT01 AS modified method Jun 02, 2022 AGT01 AS LIMS 9097 1522.2 1: TOF MSMS 1522.5>(200-2500) 35eV ESI-	3.35 - 3.65	MS/MS Jun 02, 2022 16:02:36 (+00:00)	7,614.1251	4- 5- 6- 7-	46.04	91.30	••••••

Zilebesiran AS Swap Sequences

In Silico Exercise

	Elemental composition	Monoisotopic mass (Da)	Combined coverage (%)	5'	Dotmap	3'
Zilebesiran AS	C236H304F3N83O153P2	7,614.1621	100.00			••
6-7 next neighbor swap (simulated in silico)	C236H304F3N83O153P2	7,614.1621	91.30			••
Gf-Uf swap (simulated in silico)	C236H304F3N83O153P2	7,614.1621	86.96			••

Zilebesiran AS Swap Sequences

Synthesized Swap Sequences

Zilebesiran AS Swap Sequences

Testing against "in silico" swap sequences

Zilebesiran tested and confirmed

Tested on the Dotmap:	Dotmap	
Zilebesiran AS	•••••	tested and confirmed
Swap 1	•••••	simulated in silico
Swap 2		simulated in silico
6-7 neighbor swap	••••••••	simulated in silico
Gf-Uf swap	•••••000•••000•••••	simulated in silico

Tested on the Dotmap:

Swap 1
Zilebesiran AS
Swap 2
6-7 neighbor swap
Gf-Uf swap

Dotmap tested and confirmed simulated in silico simulated in silico simulated in silico simulated in silico $\bullet\bullet\bullet\bullet\bullet\circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ\circ\circ\bullet\bullet\bullet\bullet\bullet\bullet\bullet$

Synthesized Swap 2 **U ()** tested and confirmed

Tested on the Dotmap:				
Swap 2	••••	tes		
Zilebesiran AS	••••••••••	sim		
Swap 2	••••••0000000	sim		
6-7 neighbor swap	••••••••0000000	sim		
Gf-Uf swap	••••••000•000•000	sim		

ted and confirmed nulated in silico nulated in silico nulated in silico nulated in silico

GalNac-Conjugated Sense Strand A

Multiple Collision Energies from 1 Injection

	Dotmap	Combined coverage (%)
*	•••••	100.00
**	••••••••••••••••••••••••••	14.29
**	•00000000000000000000000000000000000000	9.52

- Native oligo as tested by MS/MS (data from figures to left)
- ** Assignment challenged with in silico swapped sequences

Data analysis completed in < 10 min

Multiple Collision Energies from Direct Infusion

Completed in < 3 min

| Tricky Example 1 – Next Neighbor Amidite Swap

16 CONFIDENTIAL

||Tricky Example 2: Next Neighbor Amidite Swap

21-mer Oligo

21-mer Oligo	7018.059
Swapped sequence pos 9-10	7018.059
Swapped sequence pos 10-11	7018.059

Isotope similarity cutoff at 70%

Isotope similarity cutoff at 72%

Monoisotopic mass (Da)	Combined coverage (%)	Dotmap	Ν	/lonoisotopic mass (Da)	Combined coverage (%)	Dotmap
7,018.0588	100.00	••••••	21-mer Oligo	7,018.0588	100.00	••••••
7,018.0588	100.00	••••••	Swapped sequence pos ((simulated in silico)	10-11 _{7,018.0588}	100.00	••••••
7,018.0588	100.00	•••••	Swapped sequence pos (simulated in silico)	9-10 7,018.0588	90.48	••••••

Conclusions and Future Work

- Software such as CONFIRM Sequence and alternative vendor software can be used to streamline sequence confirmation.
 - Able to confirm 100% sequence coverage
 - Able to distinguish and confirm a sequence against its in silico swap sequences
- Multiple collision energies are necessary for full sequence coverage.
- Processing settings such as mass tolerance must be fine tuned.
- Vendor software could be improved to be "fully" automated (import data directly into CONFIRM).

||Acknowledgements

Analytical Development

- Matthias Kretschmer
- Roy Huang
- Bo Pang
- Elena Belitsky
- Lubomir Nechev
- Evelyn Kim
- Jerry Jiang
- Greg Jones
- Waters Corporation
- Roche
- And many more!

II Thank you!

