Elucidation, Characterization and Monitoring of a Unique Tyrosine Sulfation Post-translational Modification During Bispecific Antibody Process Development and Scaleup

David Mahon, Nandakumar Madayiputhiya, Ming Gu, Guodong Chen, Li Tao Analytical Development and Attribute Sciences Biologics Development

Sept 6th, 2023 CASSS-Mass Spectrometry <u>Molecular Design, Developability and Biotransformation</u>

H Bristol Myers Squibb

Protein Characterization Plays an Integral Role in the Development of Biologics Products

MS Role in Protein Characterization

Presentation Outline

✓ Tyrosine Sulfation Characterization

- Tyrosine Sulfation Introduction and Molecule Background Information
- Identification Site of Sulfation Multi-Enzymatic Proteolytic Digestion Approach Synthetic Peptides EAD Fragmentation

✓ LC-MS for Cell Line Development & Process Development Support

- High-throughput Sulfation LC-MS Intact Mass Method Development
- LC-MS Support of CLD and Process Development Efforts to Reduce Sulfation During Protein Therapeutic Process Development

Sulfo-Tyrosine- Background

Recent Literature

- Tyrosines are sulfated by tyrosylprotein sulfotransferase <u>(TPST)</u> in the <u>Golgi</u>
- TPST motifs are associated with adjacent E/D residues
- <u>AEX purification step removed sulfo-</u> <u>tyrosine</u> species (lower yield).
- <u>Sodium chlorate at 16 mM</u> inhibited tyrosine sulfation by more than 50%- no impact on antibody titer or quality.

Seibert and Sakmar. Pep.Sci. 2008, 90, 459-477

Zhao et al. Mabs, 2017, 9, 985-995

Tyshchuk et al. Mabs, 2019, 11, 1219-1232

Liu et al. Biotech J. 2021

Discovery Data Phosphatase & Sulfatase Treatment Confirms Sulfo-Tyrosine

2+1 Bispecific

Identifying Site of Sulfation-Challenges for Quantitation and Localization Using MS

• Sulfotyrosine is highly labile: MS Source Parameters Can Induce Loss of SO3

- Complete Loss of sulfate SO3 (80 Da) Prior to Fragmentation-CID or HCD.
- Impossible to Identify Site if ≥ 2 Y Present on the Peptide

Summary of Multi-Enzymatic Proteolytic Digestion Approach to Identify Site of Tyrosine Sulfation

Synthetic Peptides Confirmed Tyrosine Sulfation on Y³

• XIC of Chymotrypsin Peptides Y³-X and Y²-X +80Da

• Sulfated Peptide in Sample Digest Elute at the Same Retention Time as Y³ Sulfated Synthetic Peptides

Orthogonal Electron Activated Dissociation (EAD) Confirmation: Site of Sulfation on Y³

- Alternative MS/MS fragmentation such as Electron-transfer dissociation (ETD) and Electron-capture dissociation (ECD) are milder fragmentation techniques compared to CID and HCD.

Tyrosine Sulfation Impacts Binding of Bispecific to Target

• Tyrosine Sulfation Determined to be a CQA

LC-MS Cell Line Development & Process Development Support

High-throughput Sulfation LC-MS Intact Mass Method Development for CLD and PD Support

A: Glycosylated Intact

B: De-glycosylated Intact

Sample Preparation: PNGaseF reduces sample complexity and possible interference from glycans

High-throughput Sulfation LC-MS Intact Mass Method Development: Comparison of Intact MS Approaches

Sample Preparation	Type of Analysis	Reason
De-Glycosylated	Reduced	 Better resolution. No interference from glycosylation <u>More sensitive to MS conditions</u>. Additional data analysis Vs intact-MS
De-Glycosylated (PNGaseF, 2hr, optimized)	Non-reduced	 Better resolution No interference for sY1, Interference from glycation for sY2 quantification. Less sensitive to MS conditions

Relative Quantitation of Sulfo-Tyrosine During Clone Selection

Goal: Selected a clone with relative percentage lower than reference lot.

CLONE SAMPLE #

• LC-MS based intact mass method to quantify Tyrosine sulfation trends during CLD

Previous Study: Chemical Inhibitors to Reduce Tyrosine Sulfation

Conclusion: Sodium chlorate at 16 mM inhibited tyrosine sulfation >50% with no major impact on antibody titer or quality

Liu, R., Zhang, Y., Kumar, A., Huhn, S., Hullinger, L., & Du, Z. (2021). Modulating tyrosine sulfation of recombinant antibodies in CHO cell culture by host selection and sodium chlorate supplementation. Biotechnol. J

Sodium Chlorate Sulfation Inhibition Study

- Minimal impact on the reduction of sulfation with the addition of 30mM sodium chlorate.
- Sodium chlorate impacted titer.

CLD Re-engineered Cell Line Prevented Tyrosine Sulfation

Summary

✓ Tyrosine sulfation presented multiple analytical challenges for identification and quantitation.

 ✓ Identification Site of Sulfation: Multi-Enzymatic Proteolytic Digestion Approach Synthetic Peptides EAD Fragmentation

 Structure/Function Characterization of Sulfated Species Including Assessment of their Impact on Potency

 LC-MS Intact Mass Analysis to Support CLD and PD Efforts to Reduce Sulfation During Protein Therapeutic Process Development.

 $-\operatorname{Sodium}$ Chlorate and CLD Study

 Establishment of Fundamental Guidelines for Identification and Quantification of Tyrosine Sulfation PTM in Therapeutic Proteins

Acknowledgements

<u>BPC CoE</u> Nandakumar Madayiputhiya Ming Gu Guodong Chen Naresh Chennamsetty Ran Furman Thomas Slaney Li Tao

<u>Bioassay CoE</u> Patrick Wong Zhijie Cheng Darren Kamikura Tara Stauffer

Biologics Analytical Development Hao Luo Ming Zeng <u>CLD</u> Jacqualyn Schulman Dan Huang

<u>Global Upstream and CLD</u> Evan Schlaich Rachel Egan Lakshmi Kandari

DPD Haiying Bao Ji Zheng

<u>GPAS</u> Jessica Gruskos

Analytical Organization Development Joseph Huang Hui Wei DPAS Christopher Lietz Sarah Franc Younhee Cho Steven Wang Sally Karbo Jon Cordia Doug Banks

<u>PAS</u> Ekaterina Deyanova

<u>SCIEX</u> Zhengwei Chen

Bristol Myers Squibb[™]