Elucidation, Characterization and Monitoring of a Unique Tyrosine Sulfation Post-translational Modification During Bispecific Antibody Process Development and Scaleup

David Mahon, Nandakumar Madayiputhiya, Ming Gu, Guodong Chen, Li Tao
Analytical Development and Attribute Sciences
Biologics Development

Sept 6th, 2023
CASSS-Mass Spectrometry
Molecular Design, Developability and Biotransformation

Bristol Myers Squibb
Protein Characterization Plays an Integral Role in the Development of Biologics Products
MS Role in Protein Characterization

Intact-MS Peptide Map

- Mass Heterogeneity
- Primary Structure
- Sequence Variants
- Degradation PTMs
- Site-specific Glycosylation
- Purity: Homodimer/Heterodimer/Clipping
- Glycation
- Disulfide/Trisulfide/Cysteinylation
- HCP

Purity:
Homodimer/Heterodimer/Clipping

Glycation

Mass Heterogeneity

Primary Structure

Sequence Variants

Degradation PTMs

Site-specific Glycosylation

Disulfide/Trisulfide/Cysteinylation

HCP
Presentation Outline

✓ **Tyrosine Sulfation Characterization**
 - Tyrosine Sulfation Introduction and Molecule Background Information
 - Identification Site of Sulfation
 - Multi-Enzymatic Proteolytic Digestion Approach
 - Synthetic Peptides
 - EAD Fragmentation

✓ **LC-MS for Cell Line Development & Process Development Support**
 - High-throughput Sulfation LC-MS Intact Mass Method Development
 - LC-MS Support of CLD and Process Development Efforts to Reduce Sulfation During Protein Therapeutic Process Development
Recent Literature

- Tyrosines are sulfated by tyrosylprotein sulfotransferase (TPST) in the Golgi

- TPST motifs are associated with adjacent E/D residues

- AEX purification step removed sulfo-tyrosine species (lower yield).

- Sodium chlorate at 16 mM inhibited tyrosine sulfation by more than 50%—no impact on antibody titer or quality.

Zhao et al. Mabs, 2017, 9, 985-995
Tyshchuk et al. Mabs, 2019, 11, 1219-1232
Liu et al. Biotech J. 2021
Discovery Data
Phosphatase & Sulfatase Treatment Confirms Sulfo-Tyrosine

2+1 Bispecific

Intact Mass Analysis

Bispecific Antibody
- phosphatase
+ phosphatase

GOF/GOF
+80 Da

GOF/G1F
+80 Da

Bispecific Antibody
- Sulfatase
+ Sulfatase

GOF/GOF
+80 Da

GOF/G1F
+80 Da
Identifying Site of Sulfation-Challenges for Quantitation and Localization Using MS

- Sulfotyrosine is highly labile: MS Source Parameters Can Induce Loss of SO3
- Complete Loss of sulfate SO3 (80 Da) Prior to Fragmentation-CID or HCD.
- Impossible to Identify Site if ≥ 2 Y Present on the Peptide
Summary of Multi-Enzymatic Proteolytic Digestion Approach to Identify Site of Tyrosine Sulfation

2+1 Bispecific Antibody

(1) **Trypsin digestion** identified a +80Da modification on tryptic peptide:

R.**XXXXDY**1**Y**2**Y**3**D**XX**X**XX**X**Y**4**Y**5**Y**6**X**XX
XXXXXXXXXXXXXXK.X

(2) **Asp-N digestion** identified a +80Da modification on HC CDR peptide:

DY1**Y**2**Y**3.D

(3) **Chymotrypsin digestion** identified a +80Da modification on HC CDR peptides:

Y.**Y**3DXX.X and Y.**Y**2**Y**3DXXX.X

(4) Synthetic peptides confirmed **Y**3 on HC CDR region as site of sulfation

Identification with ETD
Synthetic Peptides Confirmed Tyrosine Sulfation on Y³

- XIC of Chymotrypsin Peptides Y³-X and Y²-X +80Da

- Sulfated Peptide in Sample Digest Elute at the Same Retention Time as Y³ Sulfated Synthetic Peptides
Orthogonal Electron Activated Dissociation (EAD) Confirmation: Site of Sulfation on Y^3

- Alternative MS/MS fragmentation such as Electron-transfer dissociation (ETD) and Electron-capture dissociation (ECD) are milder fragmentation techniques compared to CID and HCD.

- ECD/EAD generated signature ion (C_{8}-C_{10}) to locate sulfation on Y^3 of tryptic peptide XXXXDYY^3DXXXXXXXXYYY
Tyrosine Sulfation Impacts Binding of Bispecific to Target

- Tyrosine Sulfation Determined to be a CQA

$$s_Y$$ effect on PrX binding

<table>
<thead>
<tr>
<th>sY</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>0.834</td>
</tr>
<tr>
<td>Y2</td>
<td>0.957</td>
</tr>
</tbody>
</table>

|$1\% s_Y$ change corresponds to change in potency of $y\%$ (slope):|

<table>
<thead>
<tr>
<th>sY</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>-0.312</td>
</tr>
<tr>
<td>Y2</td>
<td>-0.752</td>
</tr>
</tbody>
</table>
LC-MS Cell Line Development & Process Development Support
High-throughput Sulfation LC-MS Intact Mass Method Development for CLD and PD Support

A: Glycosylated Intact

Sample Preparation: PNGaseF reduces sample complexity and possible interference from glycans
High-throughput Sulfation LC-MS Intact Mass Method Development: Comparison of Intact MS Approaches

<table>
<thead>
<tr>
<th>Sample Preparation</th>
<th>Type of Analysis</th>
<th>Reason</th>
</tr>
</thead>
</table>
| De-Glycosylated | Reduced | • Better resolution.
| | | • No interference from glycosylation
| | | • More sensitive to MS conditions.
| | | • Additional data analysis Vs intact-MS |
| ✓ De-Glycosylated | Non-reduced | • Better resolution
| (PNGaseF, 2hr, optimized) | | • No interference for sY1, Interference from glycation for sY2 quantification.
| | | • Less sensitive to MS conditions |

MS Parameters Impact on sY1 quantification

<table>
<thead>
<tr>
<th>MS Parameters</th>
<th>De-glycosylated</th>
<th>De-glycosylated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non reduced</td>
<td>Reduced, HC1 & HC2</td>
</tr>
<tr>
<td>Cone Voltage</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Capillary Voltage</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Capillary Temperature</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Impact of Cone Voltage on sY1
Relative Quantitation of Sulfo-Tyrosine During Clone Selection

Goal: Selected a clone with relative percentage lower than reference lot.

- LC-MS based intact mass method to quantify Tyrosine sulfation trends during CLD
Previous Study: Chemical Inhibitors to Reduce Tyrosine Sulfation

Conclusion: Sodium chlorate at 16 mM inhibited tyrosine sulfation >50% with no major impact on antibody titer or quality

• Minimal impact on the reduction of sulfation with the addition of 30mM sodium chlorate.
• Sodium chlorate impacted titer.
CLD Re-engineered Cell Line Prevented Tyrosine Sulfation

sY0

sY1 Reference mono sulfation peak

Control

Re-engineered Clones

Graph showing relative %sY for different conditions:
- Reference
- Control
- CLD 1
- CLD 2
- CLD 3
- CLD 4
Summary

✓ Tyrosine sulfation presented multiple analytical challenges for identification and quantitation.
 ✓ Identification Site of Sulfation:
 Multi-Enzymatic Proteolytic Digestion Approach
 Synthetic Peptides
 EAD Fragmentation

✓ Structure/Function Characterization of Sulfated Species Including Assessment of their Impact on Potency

✓ LC-MS Intact Mass Analysis to Support CLD and PD Efforts to Reduce Sulfation During Protein Therapeutic Process Development.
 – Sodium Chlorate and CLD Study

✓ Establishment of Fundamental Guidelines for Identification and Quantification of Tyrosine Sulfation PTM in Therapeutic Proteins
Acknowledgements

BPC CoE
Nandakumar Madayiputhiya
Ming Gu
Guodong Chen
Naresh Chennamsetty
Ran Furman
Thomas Slaney
Li Tao

Bioassay CoE
Patrick Wong
Zhijie Cheng
Darren Kamikura
Tara Stauffer

Biologics Analytical Development
Hao Luo
Ming Zeng

CLD
Jacqualyn Schulman
Dan Huang

Global Upstream and CLD
Evan Schlaich
Rachel Egan
Lakshmi Kandari

DPD
Haiying Bao
Ji Zheng

GPAS
Jessica Gruskos

Analytical Organization Development
Joseph Huang
Hui Wei

DPAS
Christopher Lietz
Sarah Franc
Younhee Cho
Steven Wang
Sally Karbo
Jon Cordia
Doug Banks

PAS
Ekaterina Deyanova

SCIEX
Zhengwei Chen