Oligonucleotide Mapping via LC-UV-MS/MS to Enable Comprehensive Primary Structure Characterization of an mRNA Vaccine Against SARS-CoV-2

<u>Andrew W. Dawdy¹</u>, Brian C. Gau¹, Leah Hanliu Wang¹, Carlos H. Castaneda¹, Olga V. Friese¹, Matthew S. Thompson², Thomas F. Lerch¹, David J. Cirelli², and Jason C. Rouse²

¹Biotherapeutics Pharm. Sci., Pfizer Inc, St Louis, MO, USA and ²Andover, MA, USA

CASSS MS - Practical Applications of Mass Spectrometry in the Biotechnology Industry Chicago, September 8th, 2023

All authors and work were funded by Pfizer.

Outline

- Overview of the Comirnaty (BNT162b2) mRNA Vaccine Against SARS-CoV-2
- Oligonucleotide Mapping of BNT162b2 mRNA Primary Structure by LC-UV-MS/MS
 - Workflow
 - Core reportables providing direct primary structure understanding
- Oligonucleotide Mapping Method Development Highlights
- Additional Oligonucleotide Mapping Application Highlights
 - Batch Comparability
 - Variant Construct Comparisons

Overview of the Comirnaty mRNA Vaccine (BNT162b2) Against SARS-CoV-2

Basic Design of Pfizer/BioNTech mRNA Vaccine(s) against SARS-CoV-2

- Train patient's immune system to recognize the virus, specifically the spike protein on the surface
- Give the "code" or "recipe" of the spike protein to your cells

Analytical Characterization of the Drug Substance (mRNA) is Critical for — Development of a High Quality Manufacturing Process & Product

Platform QC Assays

- Compendial methods
- Purity by Capillary Gel Electrophoresis
- Purity by Immunoblot
- Concentration by UV spectroscopy
- Identity, Impurities by PCR-based methods

Heightened Characterization

Primary Structure

- Oligonucleotide mapping (LC-UV-MS/MS)
- Nucleoside Analysis (LC-UV-MS)
- NextGen Sequencing (NGS)

Higher Order Structure

• Circular Dichroism (CD)

Protein Expression

- FACS
- Western Blot

Oligonucleotide Mapping of mRNA Primary Structure by LC-UV-MS/MS is Applied in Three Ways to Support mRNA Vaccine Development

Direct Primary Structure Understanding

- 5' terminus (capping)
- 3' terminus (poly(A) tail)
- Full-length mRNA

Batch Comparability Assessment

- Process changes
- Scale-up
- Scale-out

Orthogonal Identity

- BNT162b2 (Original)
- Variant constructs (Delta, Omicron)

Oligonucleotide Mapping of mRNA Primary Structure by LC-UV-MS/MS has

Supported Regulatory Filings And Launches in 180+ Markets Globally

Figure adapted from Lewis LM, Badkar AV, Cirelli D, Combs R, Lerch TF. J Pharm Sci. 2023 Mar;112(3):640-647.

Oligonucleotide Mapping of BNT162b2 mRNA Primary Structure by LC-UV-MS/MS

Simple, Robust, Semi-Automated Workflow

Semi-Automated Data Analysis Workflow

- Mass table by retention time
- Identifications (~70% Coverage)

2. Automated LC-UV Annotation

- Match Peak IDs to Chromatogram
- Reformatted Mass Table

3. Supplement LC-UV Annotation

- Data mining & MS/MS Analysis Tools
- 4. Supplement Missing Coverage
 - Data mining & MS/MS Analysis Tools

```
5. Add 5' & 3' Termini Characterization
```

Final Reportables

- Fully-Annotated Chromatographic Map
- Sequence Coverage Calculation & Map
- Curated Mass Table
- 5' & 3' terminus characterization

Result: Fully Annotated BNT162b2 Oligonucleotide Map

Pfizer

Result: 100% BNT162b2 Sequence Coverage Observed

Oligonucleotide Mapping Enables Simultaneous Characterization of the

5' Terminus Without Affinity Purification

Oligonucleotide Mapping of mRNA Enables Simultaneous Characterization of the 3' Terminus Without Affinity Purification

Mass (Da)

Detection of Multiple Loci

Measured XIC Areas of Non-Unique Sequence Isomers Correlate with their Number of Loci in the Full Length mRNA Sequence

Measured UV Areas Across Oligonucleotide Map Correlate with Theoretical UV Areas but only when Accounting for All Loci of Non-Unique Oligonucleotides

Identification of Oligonucleotides by LC-MS/MS

The Challenge

MS/MS Fragmentation is Critical For Differentiating Oligonucleotide Sequence —— Isomers Generated Through Enzymatic Digestion by RNaseT1

Identification of Oligonucleotides by LC-MS/MS

HCD Fragmentation Study

Higher Energy Collision Dissociation (HCD) Parameters Optimized to — Generate Fragmentation Appropriate for Oligonucleotide Mapping

Fragmentation of RNA Oligonucleotides is Complex

Figure adapted from McLuckey SA, Van Berkel GJ, Glish GL. Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom. 1992 Jan;3(1):60-70.

HCD Collision Energy Optimized at Stepped CE 17, 21, 25

Charge densities are fixed at 0.4 charge / base

V = N1-methyl pseudouridine

Applying Optimized HCD to Differentiate 2 Sequence Isomers Differing by a Single Exchange in Base Positions

Optimal Fragmentation Enables Differentiation of Highly Similar Sequence Isomers

V = N1-methyl pseudouridine

Observed 5' fragments					
а	b	С	d	#	
		(319.0) ¹⁻	(337.0) ¹⁻	1	V
(559.1) ¹⁻	(577.1) ¹⁻	(639.1) ¹⁻	(657.1) ¹⁻	2	V

Fidelity of Automated Oligonucleotide Identifications Comprehensively Verified by Decoy Searching

Decoy search excluding BNT162b2 mRNA construct

No Preferential Match

Decoy search including BNT162b2 mRNA construct

Preferential Match to BNT162b2

Oligonucleotide Mapping of BNT162b2 mRNA Primary Structure by LC-UV-MS/MS

Batch Comparability Assessment

Oligonucleotide Mapping Enables Assessment of mRNA Batch Comparability

Oligonucleotide Maps Demonstrate Comparability of Multiple BNT162b2 mRNA Drug Substance Batches

- Side-by-side analyses are highly robust
- Chromatographic peaks overlay well

Oligonucleotide Mapping of BNT162b2 and Variant Construct Primary Structure by LC-UV-MS/MS

Orthogonal Identity Assessment

Oligonucleotide Mapping Enables Comparison of mRNA for Variant Constructs

Conclusion

- Oligonucleotide mapping via LC-UV-MS/MS directly interrogates the primary structure of RNA, enabling enhanced structural understanding for mRNA vaccines, genetic therapies, and other RNA molecules
- Semi-automated workflow produces a reproducible and fully-annotated oligonucleotide map
 - Fully-annotated LC/UV chromatogram
 - Sequence coverage map (up to 100% sequence coverage e.g. BNT162b2)
 - Microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A) tail length
- MS/MS fragmentation was optimized and fidelity of identifications verified by decoy sequence searching
- Oligonucleotide mapping assisted the development and commercialization of the Comirnaty® vaccine against SARS-CoV-2
 - Elucidation of Structure (3.2.S.3.1)
 - Comparability (3.2.S.2.6)
 - Data supported regulatory filings to health authorities in 180+ markets
- Gau, B.C., Dawdy, A.W., et al. Sci Rep 13, 9038 (2023)
 - Step-by-step protocol and VBA-enabled data analysis tools are publicly available

Special Thanks

Brian Gau (Pfizer)

Lead oligonucleotide map co-developer & mass spectrometry lead on Comirnaty mRNA vaccine against SARS-CoV-2 **BioNTech**

ThermoFisher Scientific Protein Metrics Agilent Waters

