

Performance Characteristics of Mass Spectrometry-Based Methods for Quantitation of Nitrosamines: Insight from an Inter-laboratory Study

Jingyue (Jan) Yang

Senior Research Scientist CDER/OPQ/Office of Testing and Research US Food and Drug Administration

CASSS, September 2022

Disclaimer

This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies.

A quality product of any kind consistently meets the expectations of the user.

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

www.fda.gov

Participating Laboratories

Therapeutic Goods Administration (Australia)

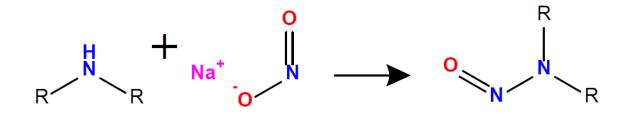
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit

Bavarian State Office for Health and Food Safety (LGL) (Germany)

Health Canada Health Canada (Canada)

Swissmedic (Switzerland)

Food and Drug Administration (United States)


Raghavi Kakarla; Tim Marzan;

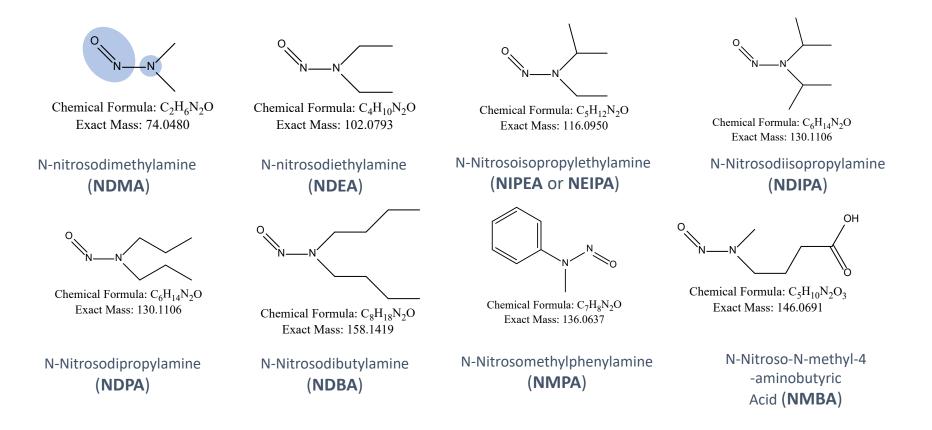
Cynthia Sommers; Jason Rodriguez;

David Keire

Nitrosamines

- Nitrosamines are common contaminants present in low amounts (ppm) in foods, beverages, cosmetics, water waste, tobacco products, and many other consumer goods
- Many nitrosamines are probable or possible carcinogens. "Cohort of concern" in ICH M7 (mutagenic impurities in pharmaceuticals)

Nitrosamine Contamination in Pharmaceutical Products


- Since 2018, nitrosamine contamination has led to the recall and even the market withdrawal of several widely used medicines.
- It has become one of main focuses of pharmaceutical manufacturing

FDA

https://www.fda.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications

Common Nitrosamines Found or Predicted to be Present in Pharmaceuticals

FDA

Response and Engagement of Regulatory Authorities

GUIDANCE DOCUMENT

Control of Nitrosamine Impurities in Human

Drugs

Guidance for Industry

SEPTEMBER 2020

Nitrosamine impurities <share

EUROPEAN MEDICINES AGENCY

Table of contents

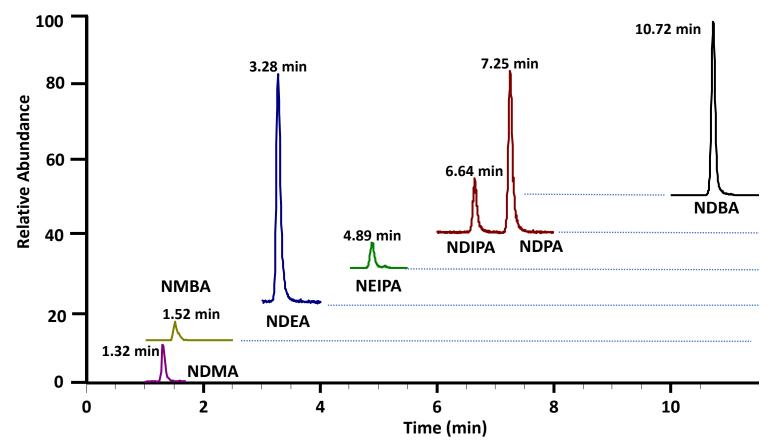
SCIENCE MEDICINES HEALTH

- Scientific review on the risk of nitrosamine impurities in human medicines
- Nitrosamine Implementation Oversight Group
- Guidance for marketing authorisation holders

FDA Guidance: Acceptable Intake Limits for Nitrosamines

Nitrosamine	Acceptable Intake Limit (ng/day)
NDMA	96
NDEA	26.5
NMBA	96
NMPA	26.5
NIPEA	26.5
NDIPA	26.5

"Manufacturers of APIs and drug products should use methods with LOQs at or below 0.03 ppm Manufacturers should establish methods for which the LOQ and limit of detection (LOD) are as low as reasonably practical for products for which the maximum daily dose is high (e.g., greater than 1 g)"


FDA Guidance for Industry: Control of Nitrosamine Impurities in Human Drugs (https://www.fda.gov/regulatory-information/search-fda-guidance-documents/control-nitrosamine-impurities-human-drugs)

Nitrosamine Determination by Mass Spectrometry

		MS/MS (MRM)	High Resolution MS
Mass Analyzer		Q1 Q2 (CID) Q3	Crbitrap
Ion source		APCI	ESI
Scan Mode	NDMA	$75.1 \rightarrow 43.1; 58.1 (+)$	MS2 (+) (75.1); EIC 75.0553
	NDEA	$103.1 \rightarrow 75.1; 47.1 \ (+)$	SIM (+) (103.1); EIC 103.0866
	NEIPA	$117.1 \rightarrow 75.1; 47.1 \ (+)$	MS2 (+) (117.1); EIC 75.0553
	NDIPA	$131.1 \rightarrow 89.1; 43.1 (+)$	SIM (+) (131.1); EIC 131.1179
	NDPA	$131.1 \rightarrow 89.1; 43.1 \ (+)$	SIM (+) (131.1); EIC 131.1179
	NMPA	$137.1 \rightarrow 107.1; 66.1 (+)$	SIM (+) (137.1); EIC 137.0709
	NDBA	$159.1 \rightarrow 103.1; 57.1 \ (+)$	MS2 (+) (159.1); EIC 103.0866
	NMBA	$147.1 \rightarrow 117.1; 44.1 \ (+)$	SIM (-) (145.1); EIC 145.0619

FDA

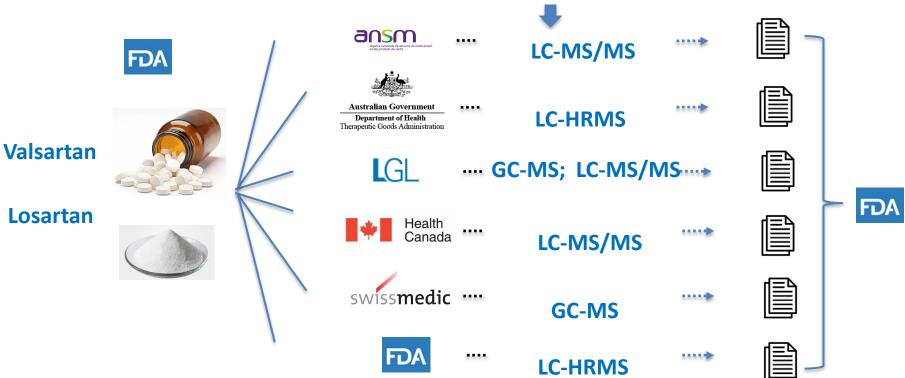
Example Chromatogram (Losartan Drug Substance Spiked With 0.1 ppm Nitrosamine)

Questions to be Addressed and Study Objectives

FDA

- A variety of analytical procedures have been developed to address the needs.
- What performance should be expected when evaluating a nitrosamine analytical procedure?
- Is a 0.03 ppm (or lower) quantitation limit possible to achieve?

Inter-laboratory Study



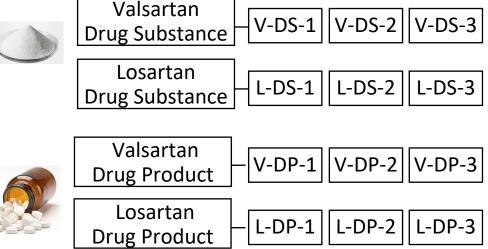
- To understand the performance characteristics of nitrosamine analytical procedures:
 - Quantitation limit
 - Precision, accuracy
 - Areas for improvement
- To evaluate and recommend appropriate performance criteria (precision and accuracy).

Study Design

- Fully validated;
 NDMA and NDF
- \geq NDMA and NDEA

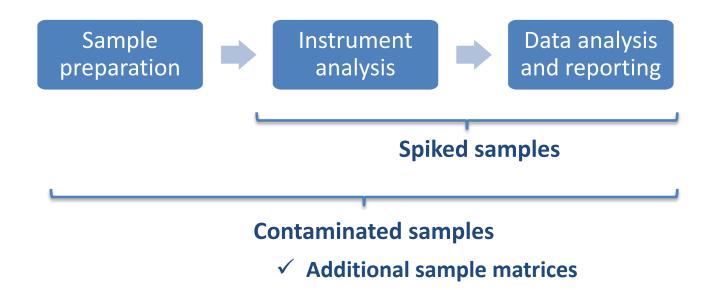
Samples for the Study: Spiked Sample

- 4 sample matrices
 - 2 drug substance
 - 2 drug products
- No detectable nitrosamines
- NDMA, NDEA, NDIPA, NEIPA, NDBA and NMBA were spiked.
- 5 spiking levels
- 3 replicates each level
- Total number of samples: 72



18

FDA


Samples for the Study: Contaminated Samples

- NDMA, NDEA and/or NMBA at a concentration range of 0.003 ppm to 50 ppm.
- 6 lots of drug substance
 - 3 lots of valsartan;
 - 3 lots of losartan
- 6 lots of drug products
 - 3 lots of valsartan;
 - 3 lots of losartan
- 3 replicates each sample
- Total number of samples: 36

Samples for the Study

Overview of Analytical Procedures Used in This Study

	Sample preparation	Inst	rument an	alysis	Quantitation
LC-HRMS	Extraction by methanol		Orbitrap	SIM/MS ²	External standard
LC-HRMS	Extraction by methanol		Orbitrap	Full MS	ILIS (isotope labeled internal standard)
LC-MS/MS	Extraction by 25% methanol in water		Triple quad	MRM	ILIS
LC-MS/MS	Extraction by 10% methanol in water		Triple quad	MRM	ILIS
GC-MS/MS	Extraction by 1 M NaOH (10 mL) \rightarrow dichloromethane (4 mL) extraction		Triple quad	MRM	ILIS
GC-MS/MS	Extraction by 1 M NaOH (5 mL) \rightarrow dichloromethane (1 mL) extraction		Triple quad	MRM	ILIS

Data Analysis

Precision

Repeatability

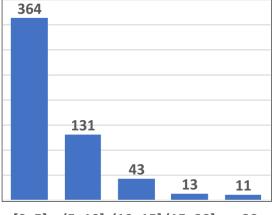
Reproducibility

$$S = \sqrt{\frac{\sum_{i=1}^{n} (xi - x)^2}{n - 1}} \qquad S_R = \sqrt{S_L^2 + S_r^2} \qquad \begin{array}{c} S_L^2 & \text{between-laboratory} \\ S_r^2 & \text{within-laboratory} \end{array}$$

$$S_r = \sqrt{\frac{\sum_{i=1}^p s^2}{p}}$$

%RSD = Standare deviation / average x 100

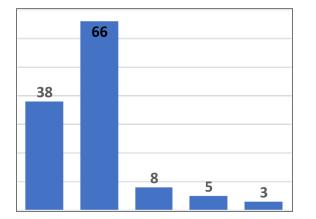
Accuracy % Difference = $\frac{x-c}{c} \times 100$


xi: Single measurement; x: Average value; n: Number of replicates; p: Number of laboratories;
c: Spiked - spiked concentration;

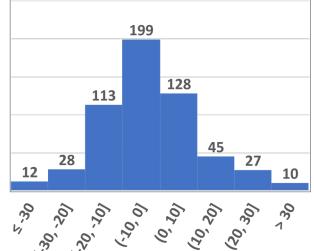
Spiked Samples: Data Overview

Repeatability %RSD

Total Number of Values: 562 98% of the Values: < 20

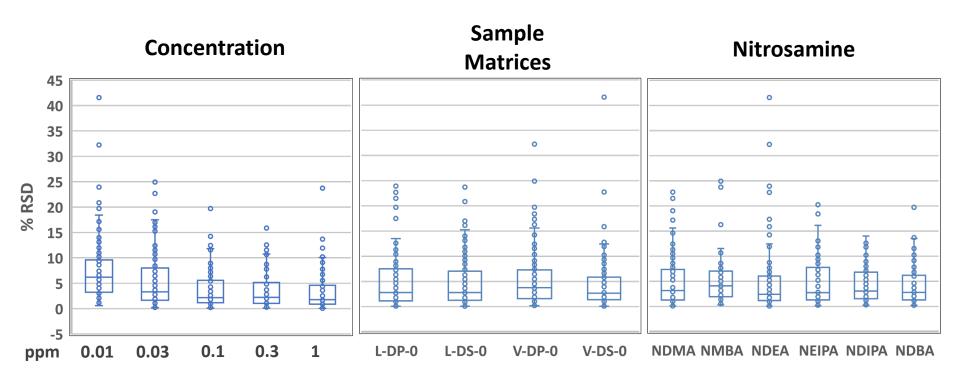

[0, 5] (5, 10] (10, 15] (15, 20] > 20

Reproducibility %RSD


Total Number of Values: 120 97% of the Values: < 35

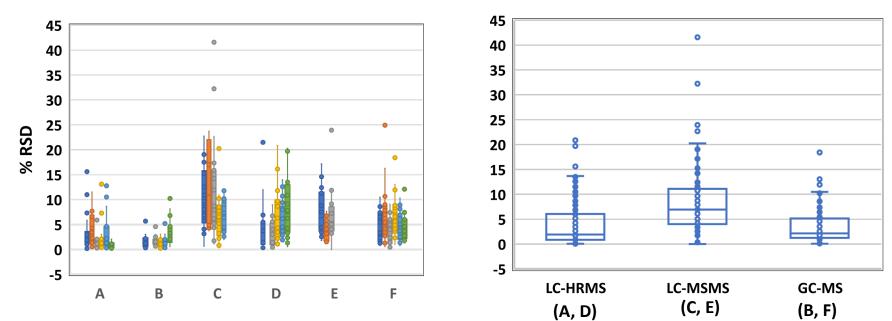
<u>%Difference</u>

Total Number of Values: 562 96% of the Values: [-30, 30]

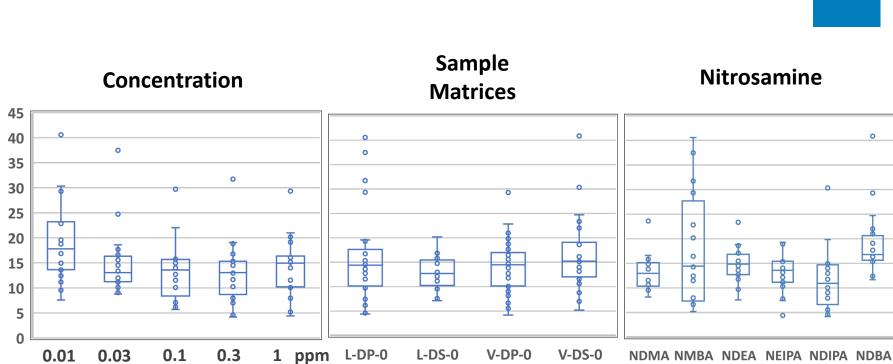


[4, 12] (12, 20] (20, 27] (27, 35] > 35

Repeatability %RSD for Spiked Samples


Repeatability %RSD for Spiked Samples

Laboratory and Nitrosamine


NDMA NMBA NDEA NEIPA NDIPA NDBA

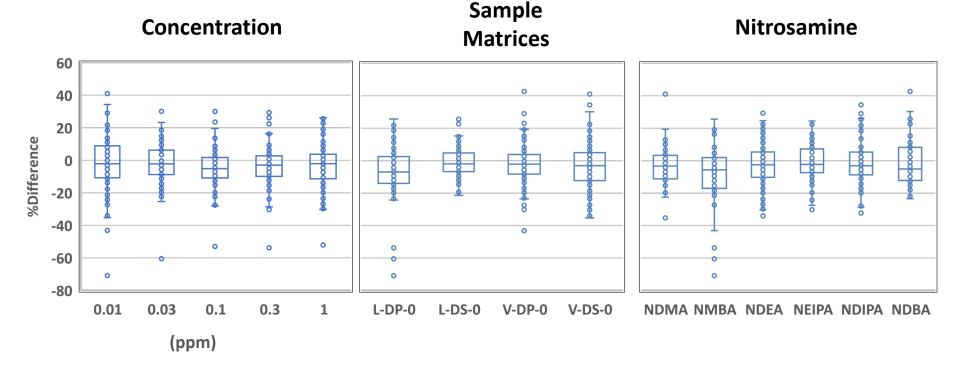
Analytical Technique

Reproducibility %RSD for Spiked Samples

% RSD

FDA

Comparison to Predicted Repeatability and Reproducibility

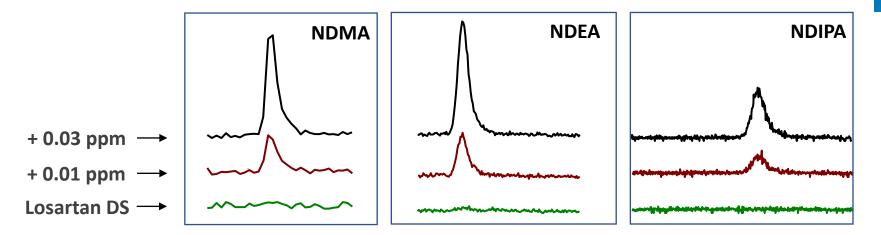


• Horwitz Equation %RSD (reproducibility) = $2^{(1-0.5logC)}$

%RSD (repeatability) is 2/3 of %RSD (reproducibility)

Concentration	Reproc	lucibility	Repeatability
Concentration	Predicted	From study	Predicted From study
0.01 ppm	32	30	21 18
0.03 ppm	27	19	18 18
0.1 ppm	22	22	15 12
0.3 ppm	19	19	13 11
1 ppm	16	21	11 10

Accuracy Evaluation: % Difference for Spiked Samples


60 40 20 NDMA % Difference NMBA 0 NDEA -20 NEIPA • NDIPA -40 NDBA -60 -80 Α В С D Ε F

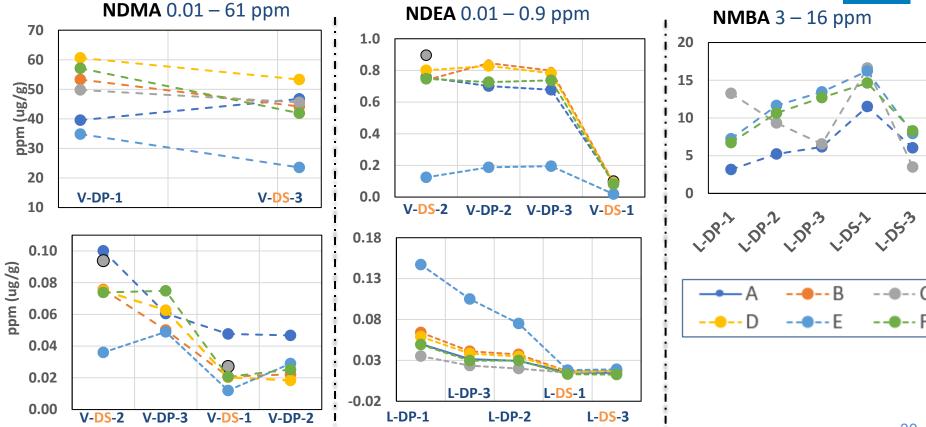
Accuracy Evaluation: % Difference for Spiked Samples

Individual Laboratory & Nitrosamine

FDA

Evaluation of Detectability, LOQ and LOD

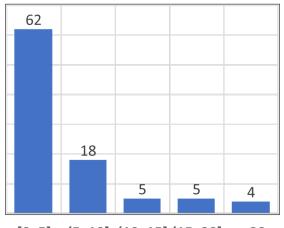
Quantitation limit (LOQ): defined by repeatability %RSD and % recovery


0.01 pm Repeatability %RSD < 20; Reproducibility %RSD < 30; % Recovery 100 ± 30%

Detection limit (LOD): between 'not detectable' and LOQ

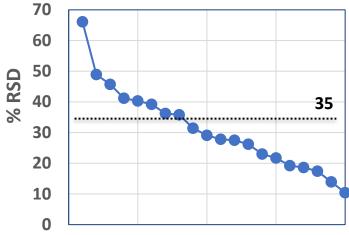
0.0006 – 0.03 ppm (reported by some participating laboratories for their procedures)

Nitrosamines in Contaminated Samples

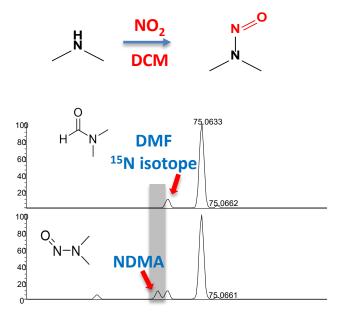


Contaminated Samples: Repeatability and Reproducibility

- FDA
- Repeatability is consistent with the spiked samples while the reproducibility shows greater variability.


Repeatability %RSD

Total Number of Values: 94 96% of the values: < 20


Reproducibility %RSD

Total Number of Values: 20 60% of the values: < 35 (vs 97%)

Potential Causes of the Large Variation for Reproducibility

- Deviation of individual laboratory results
- Sample preparation: extraction efficiency and consistency?
- Sample preparation: artifact?
 - Dichloromethane (DCM) favors NDMA formation from dimethylamine (1)
- Sample matrix: Lack of selectivity and specificity for some sample matrices
 - Some drug products contain additional API
 - *N, N* Dimethylformamide may be present and interfere NDMA identification and quantitation in metformin (2)

1. NDMA analytics in metformin products: comparison of methods and pitfalls. Eur J Pharm Sci. 2021;168:106026

2. A Cautionary Tale: Quantitative LC-HRMS Analytical Procedures for the Analysis of *N*-Nitrosodimethylamine in Metformin; The AAPS Journal volume 22, Article number: 89 (2020)

Summary

- Trace levels of nitrosamine can be measured with accuracy and precision by a variety of mass spectrometry based analytical techniques.
- LOQ: 0.01 pm and lower
 - Repeatability %RSD < 20;
 - Reproducibility %RSD < 30;
 - -~ % Recovery 100 \pm 30%
- Suggested performance criteria
 - Repeatability % RSD: \leq 18 at 0.03 ppm and lower for higher concentrations
 - Reproducibility % RSD: \leq 22 30;
 - Spiked recovery: 100 \pm 30%
 - A procedure needs to be validated for each unique sample matrix
- Areas for improvement
 - Effective and consistent sample preparation
 - Challenging nitrosamine (NMBA)