

MICROCHEMISTRY, PROTEOMICS, LIPIDOMICS + NEXT GENERATION SEQUENCING

Direct Analysis of Heterogeneous Biotherapeutics

Wendy Sandoval Director, Translational Mass Spectrometry Genentech, Inc. 30 September 2022 CASSS: Thermo Fisher Scientific Lunch Seminar

Intact Mass Measurement Approaches for Biotherapeutics

Glycoproteins as biotherapeutics

- Glycosylation is present on >50% of all human proteins
 - Role of glycosylation in the cell: Fc effector function, protein structure, more...
- >40% approved biotherapeutics are glycosylated
 - IgG-based and Fc-fusion biologics
- Glycosylation can affect pharmacological properties of biotherapeutics:
 potency, stability, bioavailability, solubility, and immunogenicity.

A single glycosylation site on a protein can produce vast molecular heterogeneity that precludes direct analysis by mass spectrometry (MS), the predominant analytical tool for glycoprotein characterization.

Strategies to investigate glycoproteins by MS

Ease of analysis

Increasingly complex modalities require adaptive analytical strategies

Intact Mass Measurement Approaches for Biotherapeutics

Proton Transfer Charge Reduction (PTCR)

Before PTCR

After PTCR

PTCR on unresolved charge states

*ASMS 2019: Orbitrap Eclipse with extended mass range (8k) and PTCR

UNIGLAMS: UNiversal Intact GLycoprotein Analysis by Mass Spectrometry

Overlapping windows of PTCR spectra are acquired and stitched together for deconvolution

Example: m/z 4000-7000, 30Th step, 60Th isolation, 10Th overlap, 100uscans, PTCR4

UNIGLAMS Workflow

UNIGLAMS Workflow

UNIGLAMS Workflow

UNIGLAMS workflow

Narrow MS² isolation at apex to confirm ion signal

Increase PTCR in MS² isolation range to establish appropriate duration

gRED CONFIDENTIAL - Do not copy, distribute or use without prior written consent.

Ovalbumin contains a single N-linked glycan yet has multiple proteoforms

Ovalbumin contains a single N-linked glycan yet has multiple proteoforms

Utility of PTCR is limited by Eclipse m/z range

Charge reduced segmented isolation resolved proteoforms for identification

A Phase IIb heterogeneous glycosylated cytokine Fusion protein

- CHO derived cytokine Fc-fusion protein
- Two IL-22 cytokines fused with the Fc portion of an IgG to prolong half-life
- Aglycosylated Fc to minimize effector function (N to G)
- Heavily glycosylated cytokines
 - 8 N-glycosylation sites
 - ✓ > 60 N-Glycans identified

4 N-glycosylation sites on each cytokine (N21, N35, N64, N143)

- With increase in sialic acid levels, exposure increases, in vitro potency decreases
- Drug exposure is the primary driver of in vivo PD response

Michelle Irwin Beardsley & IL22Fc dev team

Stepping through glycoforms with UNIGLAMS

Stepping through Spectra on Orbitrap Ascend

>160 glycoforms identified by BPF from UNIGLAMS on cytokine fusion protein

00000000

Fractional

7.64

7.10

4.26

3.84

3.45

2.22

2.22

2.13

2.13

2.11

2.03

1.98

1.64

1.55

1.37

1.35

1.35

1.25

1.20

1.07

0.95

0.95

0.94

0.89

51.85

46.14

44.91

43.57

43.29

36.55

36.72

37.89

36.96

42.85

43.37

40.41

45.15

40.34

36.31

39.10

28.80

39.86

41.29

42.35

30.17

33.53

39.28

34.91

100.00

92.92

55.76

50.24

45.12

29.11

29.05

27.90

27.84

27.60

26.57

25.96

21.47

20.24

17.91

17.70

17.62

16.38

15.75

14.06

12.39

12.37

12.30

Challenges with Ion Isolation

UNIGLAMS with Quadrupole isolation

Separation of four Sialic acid fractions with UNIGLAMS

Automating UNIGLAMS

Intact Mass Measurement Approaches for Biotherapeutics

Direct Mass Technology (DMT)

research

pubs.acs.org/jpr

a.k.a. CD-MS, single particle MS, individual ion MS

CDMS Spectrum

1.0e7 8.0e6 6.0e6 nte 4.0e6 2.0e8

GMP Lot

25000

200000

350000

Type: Mass O m/z Re

TOX Lot

DMT workflow

ThermoFisher scientific

Step 2. z=25 Aison 5600 5800 6000 6200 6400 6600 6800 7000

Single ion injection at each m/z

Enable Direct Mass technology mode

 $m/z \times z \rightarrow m$ for each ion MW of heterogenous molecule Step 5.

z Establish calibration curve

Step 4.

Step 3.

Intensity

Collect scans of individual ions

Nature Methods, Vol 17, 395–398, 2020

Some Applications of DMT

- Membrane protein in nanodisc
- 5 min collection per CE

with Michael Marty

DMT on the low SA Fraction: a cautionary tale of oversampling?

DMT on the low SA Fraction: a more conservative analysis

×	97,330	1[IL22Fc] 1[G0F-GlcNAc] 1[
0	97,505	1[IL22Fc] 2[G0F-GIcNAc] 1[
∇	97,760	1[IL22Fc] 2[G0F] 1[M5-G1F]
Δ	97,875	1[IL22Fc] 2[G0F-GIcNAc] 1[
⊳	98,040	1[IL22Fc] 1[G0F] 1[HexNAc(
	98,240	1[IL22Fc] 4[G0F] 3[M5-G1F]
0	98,475	1[IL22Fc] 2[G0F-GIcNAc] 1[
☆	98,755	1[IL22Fc] 2[G0F] 2[HexNAc(
0	99,075	1[IL22Fc] 1[G0F] 1[HexNAc(
∇	99,195	1[IL22Fc] 4[G0F] 1[M5-G1F]
Δ	99,440	1[IL22Fc] 5[G0F] 2[M5-G1F]
⊳	99,720	1[IL22Fc] 1[G0F] 2[G0] 1[He
	100,045	1[IL22Fc] 4[G0F-GIcNAc] 1[
٥	100,275	1[IL22Fc] 1[G0F-GIcNAc] 5[
÷	100,480	1[IL22Fc] 1[G0F-GlcNAc] 1[
0	100,740	1[IL22Fc] 1[G0F] 1[HexNAc(
∇	100,870	1[IL22Fc] 2[G0F] 1[M5-G1F]
Δ	100,995	1[IL22Fc] 4[G0F-GIcNAc] 5[
⊳	101,265	1[IL22Fc] 1[G0F-GIcNAc] 5[
	101,385	1[IL22Fc] 1[G0F-GIcNAc] 3[
٥	101,700	1[IL22Fc] 1[G0F] 1[HexNAc(
☆	101,865	1[IL22Fc] 2[G0F] 3[M5-G1F]
0	102,150	1[IL22Fc] 4[G0F-GIcNAc] 1[
∇	102,495	1[IL22Fc] 1[G0F] 3[G0] 2[He
Δ	102,800	1[IL22Fc] 1[G0F] 1[HexNAc(
⊳	102,995	1[IL22Fc] 1[G0F] 4[G0] 2[G2
	103,230	1[IL22Fc] 2[G0F-GIcNAc] 1[
0	103,410	1[IL22Fc] 1[G0F] 4[M5-G1F]
☆	103,630	1[IL22Fc] 1[G0F-GIcNAc] 5[
0	103,805	1[IL22Fc] 1[G0F] 4[M5-G1F]
∇	104,020	1[IL22Fc] 2[G0F] 2[M5-G1F]
Δ	104,310	1[IL22Fc] 3[G0F] 1[M5-G1F]
⊳	104,525	1[IL22Fc] 1[G0F] 1[M5-G1F]
	104,640	1[IL22Fc] 2[G0F] 3[M5-G1F]
٥	104,850	1[IL22Fc] 1[G0F] 6[G0] 2[He
☆	105,125	1[IL22Fc] 4[G0F-GIcNAc] 1[
0	105,335	1[IL22Fc] 1[G0F] 6[G0] 1[He

97,035 1[IL22Fc] 1[G0F] 1[M5-G1F]

No resolution to the resolution issue

> MW of SA15 shifts higher compared to MW of SA8

Two approaches to improve spatial resolution of heterogeneous biomolecules

- Small window isolation followed by charge reduction.
- Multiple scan windows may be merged together after deconvolution to reveal proteoforms present
- Ideal for glycoproteins and other biomoelcules with overlapping charge states

- Single particle detection at high resolution
- No deconvolution needed (so complexity not an issue)
- Useful for large molecules or complexes, membrane proteins and oligomeric structures

Thank you!

MPL Director Jennie Lill

Translational MS Luis Schachner Liz Hecht Wilson Phung Peter Liu Frank Fabela David Arnott Qingling Li Weng Wong James Joubert Shengya Cao Naincy Chanden

ThermoFisher

Josh Hinkle Romain Huguet Weijing Liu Christopher Mullen Mike Senko John Syka Kristina Srzentic Rosa Viner Vlad Zabrouskov

UniDec Michael Marty

Antibody Engineering

Danielle DiCara

Protein Analytical Chem

Michelle Irwin Beardsley