

Fast,

Large-Scale Analysis of Mass Spectrometry Data Repositories to Find the Needle in the Haystack

Simon Letarte, Anoop Mishra, Wei-Ting Liu, Doug Rehder, Franz Gabeau, Yingying Zheng

Overview

- 1. Intro MS Data
- 2. Leveraging Big Data for Mass Spectrometry
- 3. Host Cell Proteins detection by Mass Spectrometry
- 4. Peptide Mapping PQAs

Project Initiation

- Collaboration between Structure Characterization Team and Data Science Team
- Find problems we can collaborate together
 - Large amount of data with minimal annotation
 - Wanted a tool to search older data for specific ions
- Added functionality as we go
- Working on other types of data that do not have MS

Gilead Mass Spectrometry Ion Search

Mass Spectrometry Data

The 3 Stages of Mass Spectrometry Data

Deam					
HC~N392/N387+Succ	GFYPSDIAVEWESNGQPENNYK	2.06	2.27	2.73	2.60
HC N318+Succ	VVSVLTVLHQDWLNGK VVSVLTVLHQDWLNGKEYK	2.05	2.61	2.66	2.25
HC D283+Succ	FNWYVDGVEVHNAK TPEVTCVVVDVSHEDPEVKFNW YVDGVEVHNAK	2.18	3.40	1.56	3.56
HC M255+Oxid	DTLMISR	1.26	1.29	1.05	0.92
HC K450 Lys loss	SLSLSPGK WQQGNVFSCSVMHEALHNHYT QKSLSLSPGK	87.01	88.49	90.73	88.79
HC Q1+Gln->PyroGlu	QVTLR	99.29	99.31	99.75	99.32
HC N300+M5	EEQYNSTYR TKPREEQYNSTYR	1.71	1.29	1.10	1.22
HC N300+A1G0F	EEQYNSTYR TKPREEQYNSTYR	6.05	5.04	11.26	10.95
HC N300+A2G0F	EEQYNSTYR TKPREEQYNSTYR	41.13	40.14	37.36	37.05
N300+A1G1F	FFOUNSTUR	4.06	3.68	5.07	6.13

Raw

Data

- RT, m/z
- 1 Gb/file

Processed Data

- Peptides
- 100 Kb/file

Connected Data

- Metadata
- Databases

Leveraging Big Data for Mass Spectrometry

Automated Data Pipeline in the Cloud

- Developed customized web applications to streamline resource intensive analysis
 - Reduce file size by 90%, speed up data processing time from hours to secs, reduce manual procedures
- End-to-end data pipeline to connect web applications directly with data source
 - Fully automated workflows, central storage, facilitate cross-groups collaborations

Key Technology Behind Faster Ion Search

Key Concept 1: Search Time \propto Data Size

Step 1 - Low intensity noise is removed from the raw file to significantly reduce the file size by 90%

Example: 1E4 cut-off helps reduce the file size significantly

Note: The cut-off value is customizable

Key Concept 2: Metadata Removes Unwanted Search Candidates

Step 2 – Binning and binary vector representation is applied to generate meta data

Segment the x-axis m/z values into multiple bins. Where there is a peak within the bin, mark it as "1". Where there is no peak within the bin, mark it as "0".

0 1 0 0 1 0 1 0 1 0 0 0 0 ✓ Find Vector 0 0 0 1 0 0 0 0 0 0 0 0 × (logical AND > 0) 0 0 0 1 0 0 1 1 0 0 0 ✓

Key Technology Behind Faster Ion Search

Key Concept 3: Parallel Search (Map Reduce) To Deliver Instant Results

Step 3 – Custom python app to search multiple files and multiple data points all at once

The Application Interface

M/Z	TOLERANCE	
345.234 & 873.234 & 324.34 or 371.343 or 657.4554 & 45.435	0.005 x MS1 MS2	
KEYWORDS Glyca	n Waters	SEARCH

RESULTS

1. HPC/ /abc_file1.raw

345.234: intensity: 324+e5 retention time: 62.34 873.234: intensity: 53+e5 retention time: 78.31 324.34: intensity: 53+e5 retention time: 78.31

2. HPC/ /abc_file3.raw

371.343: intensity: 43+e5 retention time: 56.12

HCP Analysis by Proteomics Mass Spectrometry

PLBL-2 HCP

>CHO PLBL-2 Sequence

QNLDPPVSRVRSVLLDAASGQLRLVDGIHPYAVAWANLTNAI RETGWAYLDLGTNGSYNDSLQAYAAGVVEASVSEELIYMHWM NTMVNYCGPFEYEVGYCEKLKSFLEINLEWMQREMELSQDSP YWHQVRLTLLQLKGLEDSYEGRLTFPTGRFTIKPLGFLLLQI AGDLEDLEQALNKTSTKLSLGSGSCSAIIKLLPGARDLLVAH NTWNSYQNMLRIIKKYQLQFRQGPQEAYPLIAGNNLVFSSYP GTIFSGDDFYILGSGLVTLETTIGNKNPALWKYVQPQGCVLE WIRNIVANRLALDGATWADIFKQFNSGTYNNQWMIVDYKAFI PNGPSPGSRVLTILEQIPGMVVVADKTEDLYKTTYWASYNIP FFEIVFNASGLQDLVAQYGDWFSYTKNPRAQIFQRDQSLVED MNSMVRLIRYNNFLHDPLSLCEACIPKPNAENAISARSDLNP ANGSYPFQALYQRPHGGIDVKVTSFSLAKRMSMLAASGPTWD **QLPPFQWSLSPFRSMLHMGQPDLWTFSPISVPWD**

PLBL-2 is a common Host Cell Protein that pose an immunogenicity risk and may degrade polysorbate

M/Z	Charge	Mass Theo	Peptide
513.23	2	1024.4462	GLEDSYEGR
762.35	2	1522.6756	DQSLVEDMNSMVR
615.35	2	1228.6776	SVLLDAASGQLR
824.42	2	1646.8239	YVQPQGCVLEWIR
396.23	2	790.4337	LTFPTGR
600.32	2	1198.6095	AFIPNGPSPGSR
513.27	2	1024.5302	QNLDPPVSR
427.73	2	853.4446	YQLQFR

What are Host Cell Proteins (HCP)?

- Proteins from host cell organism that are present in the drug substance
- Incomplete purification by the downstream process:
 - Same physico-chemical properties as the drug
 - Affinity with the drug and hitchhiker effect.

Results Overview

Retention Time Analysis

- Different gradients can be used for different experiments
- Algorithm currently selects the most intense peak within the user-specified RT and MS1 tolerance

HCP RT Filtering

	AFIPNGPSPGSR	DQSLVEDMNSMVR	GLEDSYEGR	LTFPTGR	QNLDPPVSR	SVLLDAASGQLR	YVQPQGCVLEWIR		file [‡]	mol
file09 file08		0	•			0	0		file06	mab
file07 file06	-	0	0			0	•	д	file07	mab
file05 file04	-	•			•			nab1	file08	mab
file03		•			•				file09	mab
file01	-	•			•				file35	mab
file38	-	•		0	•	0		н	file36	mab
file36	- •	•			0		•	lab2	file37	mab
file35	- 0	•		•	0		•		file38	mab
file18			•	•				mal	file18	mab
file16				•	•			03	file19	mab
file20	- 0	•	0					ma	file20	mab
file19	-	۰				•		b4	file21	mab
file22 file21	- 0	•		•	•			nab5	file22	mab
file29			0	•	•				file23	mab
file28 file27			•	0	•			-	file24	mab
file26				•	•			mab(file27	mab
file25 file24	-		•	•	0			0,	filo20	mah
file23	-		•	•	•				mez9	map
file41	•	•		•	•		•	т	file39	mab
file40	•	•		•	•		•	ab7	file40	mab
	20 30 40	20 30 40	20 30 40 2	20 30 40	20 30 40	20 30 40	20 30 40		file41	mab
				rt						

file [‡]	molecule 🗘	nbPep	÷
file06	mab1		4
file07	mab1		5
file08	mab1		4
file09	mab1		4
file35	mab2		5
file36	mab2		4
file37	mab2		4
file38	mab2		5
file18	mab3		3
file19	mab4		3
file20	mab4		3
file21	mab5		3
file22	mab5		4
file23	mab6		3
file24	mab6		3
file27	mab6		3
file29	mab6		3
file39	mab7		5
file40	mab7		4
file41	mab7		5

file [‡]	molecule ‡	nbPep	¢
file06	mab1		4
file07	mab1		5
file08	mab1		4
file09	mab1		4
file35	mab2		5
file36	mab2		4
file37	mab2		4
file38	mab2		5
file18	mab3		3
file19	mab4		3
file20	mab4		3
file21	mab5		3
file22	mab5		4
file23	mab6		3
file24	mab6		3
file27	mab6		3
file29	mab6		3
file39	mab7		5
file40	mab7		4
file41	mab7		5

HCP Summary

- 1. Used molecule known to have PLBL2 HCP present as control
- 2. MS1 and retention time to locate previously identified PLBL2 peptides
- 3. Filter with at least 2 peptides to identify other runs that might have HCP
- 4. Use Protein Metrics Byos software to confirm hits
- 5. Working on using MS2 data to create "transitions" instead of using RT

Peptide Mapping PQAs

Rationale - more than m/z

- For some applications, PQAs might not be a fixed m/z
- Depends on sequence to calculate m/z based on peptides
- Need new interface:
 - Input protein and digest
 - Select modifications
- Return results
- Filter by selecting MS1, charge states, RT, intensity and MS2

Methionine Oxidation Characterization

Assay workflow WVTFISLLFLFM*SSAYSRSEVAHRD protein LGEEM*NFKALVLIAFAQYLQQCPF **Trypsin digestion** Reduction, Alkylation WVTFISLLFLFM*SSAYSR SEVAHR resulting DLGEEM*NFK peptides ALVLIAFAQYLQQCPF

LC-MS spectra

Data analysis pipeline

Calculate theoretical mass for

both native and modified forms

Batch search &

Report generation

Comparison with Valited Results

25

- The data processing time was reduced from a couple hours to a few secs
- Overall results generally agrees with benchmark analysis
- Our team is working closely with data science team to further optimize this web application

Methionine Oxidation Ratio

Methionine Index

* G.MSIS picked a different peak for Methionine 9 due to the original peak is in very low abundance

Performance Metrics

- 2 seconds to search 40 files with 0.005 Da mass window using serial search
- < 1s for parallel search in large number of files (depending on processing power)
- 70% of sites have methionine oxidation values within 20% of the validated results
- Discrepancies arise from:
 - Wrong peak selected
 - Ratios calculated from peak height vs peak area
- Future improvements
 - Leverage MS2 to ensure right peak is selected
 - Implement peptide modification GUI to the tool

Conclusions

- We have a tool to interrogate large amounts of data in real time
- We can retrospectively ask scientific questions
- We barely scratched the surface of what is possible
- Better use of metadata/ELN

Future Work

- Adding MS2 capability to ensure the right peak is selected
- Adding GUI for peptide modification search
- Released glycans search chromatography dimension without MS
- NLP for contextualizing the data

Acknowledgements

Biologics Analytical Organization

Alexandre Ambrogelly

Structure Characterization Team

Yana Lyon Sean Shen Mike Li **Analytical Development**

Tawnya Flick