A Disruptive Approach to the Characterization of mAb Charge Variants **During Process** Development

Greg Adams¹, **Scott Mack²**, **Maggie A. Ostrowski²**

¹Fujifilm Diosynth Biotechnologies USA

²SCIEX

Global vision and core purpose

To be the leading and most trusted global Contract **Development and Manufacturing Organization** partner in the biopharmaceutical industry.

Partners for Life Advancing tomorrow's medicines

Confidential and Proprietary

Global locations

Cambridge, MA, USA Watertown, MA, USA

College Station, TX, USA

Thousand Oaks, CA, USA

RTP, NC, USA

0

 \bigcirc

Holly Springs, NC, USA

4 Technologies Microbial Mammalian Cell & Gene Therapy and Viral Vaccines

~4,000

Employees worldwide, and growing

FUJ^{**i**}**FILM**

Hillerød, DK

Billingham, UK

Wilton, UK

Darlington, UK

19

Licenses for commercial manufacturing

\$7.4B

In investments announced in recent years

End-to-End CDMO

Pre-clinical

Phase I, II

Pre-clinical development

- **Expression Studies**
- Strain Development
- Cell Line Development
- Process Invention
- **Pre-Clinical Drug Substance**
- Pre-Clinical Drug Product

Early phase clinical

- Process Development
- Process Optimization
- Analytical Development
- Formulation Development
- cGMP Drug Substance
- cGMP Drug Product
- DS/DP Stability

FUJIFILM

Phase III

Regulatory approval / launch

Late phase clinical

- Process Characterization
- Process Validation
- Analytical Method Validation
- Formulation Optimization
- cGMP Drug Substance
- cGMP Drug Product
- DS/DP Stability

Commercial production

- cGMP Drug Substance
- cGMP Drug Product
- Finished Goods (ALP)
- Post-Approval Activities
- Product Life Cycle
- Management

Introduction

- Charge variant encompass the majority of a mAb's heterogeneity
- Traditional approaches to characterization of the charged isoforms of mAbs are extremely laborious
- The Intabio icIEF-MS system coupled with the SCIEX **ZenoTOF 7600 system (high-resolution mass** spectrometer) offers a unique and disruptive combination of charge heterogeneity analysis and molecular mass characterization in one process.
- The present study highlights rapid characterization of • charge variant species of biotherapeutic mAb cell culture process development samples using the research breadboard Intabio icIEF-MS system.

*Breadboard design

Antibody therapeutics 101

- Monoclonal antibody (mAbs) are one of the most common protein-based biotherapeutics 141 mAbs approved or are in regulatory review in the EU or US

 - **2019:** Companies are currently sponsoring clinical studies of more than 570 mAbs
 - 2022: 135 antibody therapeutics are in late-stage clinical studies, 61 cancer, 54 non-cancer and 20 COVID-19 indications

mAb Heterogeneity

Acidic Variants

- Sialylated glycoforms
- Deamidation
- Trisulfide
- Reduced disulfides
- Glycation of basic lysine residues

FUJⁱ**FILM**

Basic Variants

- C-terminal lysine truncation
- N-terminal pyroglutamate
- Succinimide
- Oxidized species
- Aglycosylated species

mAb Charge variant analysis

- Key component to understanding the heterogeneity of a mAb's physicochemical properties
 - Methods are used across the entire development cycle
 - mAb main peak and acidic/basic components are often reported as critical quality attributes to ensure patient safety and process consistency
- Charge variants typically monitored using icIEF or IEX-LC

FUJIFILM

mAb charge variant analysis

- Traditional approaches to characterize charge variant species requires laborious LC fractionation
 - **Difficult to obtain high purity fractionated species**
 - LC separation may not be directly representative of the iclEF profile
 - **Requires additional development of an orthogonal IEX-LC method and peak correlation**
 - Sample fractionation/concentration often introduces artifacts

Arrows representation where peaks were collected

FUJIFILM

For early-stage projects, prior knowledge is often utilized to risk assess the need for more in-depth characterization

High throughput mAb cell line development and process development

- mAb cell line development performed in Ambr15 micro-bioreactor with 48 parallel conditions
- mAb process development executed in 24 run DOE formats using Ambr250 mini-bioreactors
- icIEF is used as the primary tool for rapid evaluation of charge variants
- Data are evaluated for ratios of acidic and basic variants

When unexpected results are observed...

FUJIFILM

High Acidic (50%) Low Basic (4%) Content

Lower Acidic (38%) High Basic (18%) Content

How to approach the identification of these variant species?

- Assume from prior knowledge?
- Pace of cell line development doesn't align with in-depth fractionation at this stage of development
- What is really needed is something in our analytical toolbox to rapidly characterize these species.

Intabio iclEF-MS system

Up to 30 minutes per sample*

*Data from research breadboard

Microfluidic chip-based integrated iclEF-MS technology integrates key analytical functions

*Data collected from research breadboard

Data generated on research breadboard Intabio icIEF-MS system and ZenoTOF 7600 system

- Species are differentiated and identified without the need for lengthy and laborious protein scale-up and fractionation
- Scan rate of 2 Hz enables 30 TOF scans to be performed within 15 seconds; allowing detection and identification of two closely adjacent peaks
- Differences in relative abundance between Basic Peak 1A and Basic Peak 1B is clearly differentiated Separation, the scan rate of acquisition and MS sensitivity optimized for separation and peak identification

www.fujifilmdiosynth.com

*Data collected from research breadboard

iclEF-MS analysis parameters

•	3% Pharmalyte 8 to 10.5 and 1% Pharmalyte 3 to 10				
•	Methylcellulose removed to enable ESI		0.495		
•	10.0 mM Arginine added as 2.5 mM Iminodiacetic Acid – <i>speed up focusing and inhibit ITP decay of</i> <i>pH gradient</i>	Its	0.395		
•	10% DI Formamide – added instead of urea to maintain solubility during focusing because urea can impact electrospray ionization	Absorbance Un	0.295 0.195		
•	pl estimated with pl 7.27 and 9.50 peptide markers		0.095		
•	Focusing time 6.5 Min 1500 V 1 Min 3000V 1 Min 4500V 4.5 Min 		-0.005	7	

- Mobilization time 10 Min at 3500V
- **ESI Tip 5500V**

*Data collected from research breadboard

www.fujifilmdiosynth.com

9.75

How does iclEF-MS compare to iclEF on the Maurice?

*Data collected from research breadboard

iclEF-MS UV analysis of cell culture development samples

	Low basic content (LDC)				
	B7 1501	B14 1503	B16 1504	B21 1506	B10 1
Acidic	46.6%	49.9%	45.6%	46.0%	44.7
Main	48.3%	46.7%	50.5%	49.7%	38.5
Basic	5.1%	3.5%	4.0%	4.3%	16.8

Low basic content sample B7 1501

*Data collected from research breadboard

High basic content (HBC) B18 1505 B10 1601 **B18 1602** .502 7% 43.0% 43.9% 42.3% 5% 46.3% 38.1% 45.6% 3% 10.8% 18.1% 12.1%

High basic content sample B10 1502

Low basic content samples: **Basic variants and main species**

*Data collected from research breadboard

FUJⁱ**FILM**

GOF/GOF G0F/G0 **GOF/GOF-GIcNAc** GOF/G1F GOF/GOF-2GlcNAc G1F/G1F Ag/G0F G0F/G0F+PyroQ GOF/GOF+Lys **GOF/GOF-GIcNAc+PyroQ** G0F/G0F-2GlcNAc+PyroQ 148000 147000 146000

Low basic content samples: **Acidic variants**

*Data collected from research breadboard

FUJⁱ**FILM**

Acidic variants are mostly glycated species

*Data collected from research breadboard

- The complex glycan structure of the main peak is predominately GOF/GOF
- As pl decreases form Acidic Peak 1A to Acidic Peak 3 the relative abundances of glycan pairs shifts to higher order structures
- The pl dependent shift in the glycoprofile is most likely due to glycated lysines

High basic content samples: Basic variants and main species

- Much less PyroQ than the LBC type
- The change in apparent relative abundances in glycan pairs indicates Basic Peak 1B has convoluted glycation

*Data collected from research breadboard

FUJⁱ**FILM**

GOF/GOF **GOF/GOF-GIcNAc** G1F/G1F GOF/G1F G0F/G0 GOF/GO-GlcNAc G1F/G2F GOF/GOF-2GlcNAc Ag/GOF GOF/GOF+Lys GOF/G1F+Lys GOF/GOF+PyroQ **GOF/GOF-GIcNAc+Lys** G1F/G1F+Lys GOF/GOF+Lys GOF/GOF+PyroQ GOF/G1F+Lys **GOF/GOF-GIcNAc+Lys** G1F/G1F+Lys GOF/GOF+2Lys GOF/G1F+2Lys 147000 148000 146000 145000

High basic content samples: Acidic variants

- The Main Peak contains a higher relative amount of G1F and G2F glycan pairs than Low Basic Content samples
- The aglycosylated heavy chain is higher for High Basic Content samples than Low Basic *Content samples*
- As pl decreases the distribution of the glycan pairs shifts to higher order structures, indicating glycation (Hexose) - 22 -

145000

FUJIFILM

GOF/GOF GOF/GO-GlcNAc GOF/GOF-GlcNAc G1F/G1F GOF/GOF-2GlcNAc GOF/G1F GOF/GO G1F/G2F G0/G0-GlcNAc Ag/G0F GOF/GOF GOF/G1F **GOF/GOF-GIcNAc** G0F/G0 GOF/GOF-2GlcNAc G1F/G1F G1F/G2F Ag/G0F GOF/GOF GOF/GO-GIcNAc GOF/G1F **GOF/GOF-GIcNAc** GOF/GOF-2GIcNAc G1F/G1F G0F/G0 G1F/G2F G0/G0-GlcNAc Ag/G0F G2F/G2F GOF/GOF GOF/G1F G1F/G1F GOF/GO G1F/G2F G2F/G2F **GOF/GOF-GIcNAc Acidic Peak 2** GOF/GOF GOF/G1F G1F/G1F **GOF/GOF-GIcNAc** GOF/GO G1F/G2F G2F/G2F Acidic Peak 3 147000 146000

www.fujifilmdiosynth.com

*Data collected from research breadboard

Conclusions

- The research breadboard Intabio icIEF-MS system coupled with the ZenoTOF 7600 system enables the rapid characterization of charge variants of mAb cell culture cell line development/process development samples
 - A traditional fraction collection approach would have taken multiple weeks
- **Comparable icles separation profiles were observed with the research breadboard Intabio iclested** system and traditional icIEF using the Maurice
- Samples with lower basic species demonstrated slightly lower order N-linked complex glycan structure, greater C-terminal lysine processing, and higher pyroglutamate formation than higher basic species samples
- Acidic species observed in all samples were mostly attributed to higher levels of glycation products
- The research breadboard Intabio icIEF-MS system is an emerging tool with the potential to dramatically simplify charge variant characterization
- The power of knowledge in product characterization during biopharmaceutical product development is critical to the Fujifilm Diosynth Biotechnology capabilities

Acknowledgements

- FUJIFILM Diosynth Biotechnologies
 - Hunter Walker
 - Margo Wilson
 - Jason Barker
 - Michelle Lyons
 - Ben Hastings
 - Kelly Gibson
 - Caitlin Morter
 - Dan Maltman
 - David Hutton
 - Daniel Petitt

• SCIEX John Yan Yvonne Tan • Susan Darling

