Characterization of modifications on bispecific protein using native ion exchange chromatography coupled to mass spectrometry

Arnik Shah

CASSS MS Meeting 24th September 2021

Outline

- > Why are modifications important?
 - Current approach in characterization
- > Proposed new approach in characterization of modifications
- ➢ Results
 - > Native
 - Limited Digestion
 - Peptide Mapping
- Conclusions

Why are modifications important ?

- Modifications on biotherapeutic refers to enzymatic or non-enzymatic modifications that can occur during protein biosynthesis, purification process or accrue during its storage conditions
- > Modifications can affect potency, pharmacokinetics and may impact immunogenicity
- Characterizing modifications of biotherapeutic will help us in better define critical quality attributes (CQAs) related to protein therapeutic

Protein Cell 2018, 9(1):74–85

Why study modifications for bispecific protein?

- New modality compared to monoclonal antibody, need to understand impact of biosynthesis of bispecific protein on PTMs
- To understand the impact of purification and storage on modifications to bispecific protein

- Modifications impart different surface charge which can be separated using ion exchange chromatography (IEX)
- Variants are separated as acidic main and basic species

Indicates modifications

Traditional characterization approach

Proposed workflow for native characterization of bispecific protein

Confirmation of modifications identified by native IEX-HPLC-MS and limited digestion from peptide mapping by RP-HPLC-MS

Method information for IEX-MS

LC method Information	Parameter	Condition	
Mobile phase used in native IEX-MS	In-source CID	100 eV	
Solvent A: 50mM Ammonium Acetate, pH 5.8 Solvent B: 150mM Ammonium Acetate, pH 10.2 Mobile phase used in limited digestion (Native IEX-MS) Solvent A: 20mM Ammonium acetate, pH 4.5 Solvent B: 150mM Ammonium acetate, pH 9.5	Resolution	17500	
	AGC	3e6	
	Max IT	200ms	
	Spray voltage	3.8kV	
Column: YMC Biopro IEX SF, 100 X 4.6mm I.D, 5μM, SF00S05-1046WP (strong cation exchange column)	S-lens	150	
	Capillary temp	300°C	
	Source heat	275 ⁰ C	
Gradient change: 2% change B/min	HMR mode	On	
Run time: 63 min	Trapping gas	1.3	
	M/Z range	2100-6800	

MS instrument: Thermo OF+ Bionharma

Aux heat temp

220°C

Prediction of modification on drug substance

	Species	Difference with Main peak	Main peak Predicted modifications	
	A1	1	De emidation	
	A2	1.5	Deamidation	
	A3	995.2	O alvean	
	A4	915.7	O-giycan	
	A5	58.7	Amino Acid Substitution (Gly-Asp)	
	Main	0		
B1		2X	Dimer	

Main peak was observed at mass error of 16ppm

Impact of process on modifications

	Difference with	
Species	main peak	Predicted modifications
		Amino acid substitution,
A1	57, 915	O-glycan
		Hydroxylation,
A2	16	oxidation
Main Peak	0	
B1	2X	Dimer

Modification observed for thermal stress material

Modification observed for photo stressed material

Limited digestion for bispecific protein

- Antigen binding domain-1 showed presence of O-glycosylation and isomerization while antigen binding domain-2 showed presence of deamidation and amino acid substitution
- Under thermal stress 2 species were observed which showed presence of succinimide formation and isomerization on antigen domain-1
 - Photo stressed material showed presence of oxidation on antigen binding domain and antigen binding domain-2 domain

Peptide mapping procedure

Digestion Kit: Promega low pH digestion kit (catalog # VA1040) (uses rLys-C and modified trypsin based peptide digestion)

Mobile Phase

A: 0.1% Formic acid in water B: 0.1% Formic acid in acetonitrile

Flow rate: 0.25 mL/min

Instrument: UPLC (waters Acquity) binary pump system

Column: Waters, peptide BEH C18 column, 130A, 1.7μM, 2.1 X 150mm Load : 20 μL

Gradient: 0.3% change B/min Total run time: 123min

Instrument	Thermo QE+		
MS Settings			
Full MS	Full MS		
Resolution	140,000		
AGC target	2.00E+06		
Max It	200		
Scan range	200-2000 m/z		
dd-MS ²			
Resolution	35000		
AGC target	1.00E06		
Max IT	250		
loop count	5		
Isolation Window	2.5 m/z		
(N) CE	31		
Dynamic exclusion	7 sec		
Tune settings			
Spray voltage	3.8 kV		
Capillary temperature	300°C		
Probe heater temperature	250°C		
S-lens	60		
Polarity	Positive		

Peptide map result for drug substance

sample type	Modifications	Amino Acid residue	Domain
	Deamidaion	N360 and N363	Antigen binding domain-2
DS	Amino Acid Substitution	G467	Antigen binding domain-2
	Isomerization	D54	Antigen binding domain-1
			Antigen binding domain-1 and 2
	Deamidation	N360, N363, N84, N313	
Thermal Stress	Succinimide	D172	antigen binding domain
	Isomerization	D54	Antigen binding domain
	Oxidation (Double oxidation of W)	W47, W52, <mark>W490, W495</mark>	Antigen binding domain 1 and 2
Light stress	Deamidation	N360 and N363	Antigen binding domain 2
	Isomerization	D54	Antigen binding domain-1

Note : Indicates major degradation pathway observed

Observation for modification correlates with findings from limited digestion and native IEX-MS indicating observed modification are present at native level

MS2 conformation for amino acid substitution

X X X X X G X X ← Native peptide

Conclusions

Native IEX-MS

- > Successfully developed Ion exchange gradient for separation of bispecific protein variants
- Optimized MS conditions for native mass-spectrometry observations
- Successfully predicted modification at native level
 - Predicted modifications for drug substance and different forced degradation conditions (Thermal stress and photo stress conditions)
 - > Predicted modification that were cleared away by purification of bispecific protein

Limited digestion

Successfully predicted modifications related to specific domain

Peptide map

Identified and correlated modification observed by peptide map to modification predicted and inited digestion level

Workflow

Application of this workflow for different protein modality will aid in time saving and provide unbiased information regarding modifications

THANK YOU

Dr. John Harrahy Dr. Weidong Cui

Prof. Alexander Ivanov and lab members

BACKUP

Predicted glycan

 Neu?c(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1 Gal(b1-4)G

 3)[Neu?c(a2-6)Gal(b1-4)GlcNAc(b1 3)[Gal(b1-4)GlcNAc(b1 3)[Gal(b1-4)GlcNAc(b1

 2)Man(a1-6)]Man(b1-4)GlcNAc(b1 6)]Man(b1-4)GlcNAc(b1 6)]GlcNAc

Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc+"+ NeuAc

Observed difference: +2351 Average mass : 2352.1

Observed difference: +2060 Average mass : 2059.7

O-linked glycan observed for DS and inprocess purification sample

HSO3(-3)Gal(b1-4)[Fuc(a1-2)][Gal(b1-3)]Gal(b1-3)GalNA Fuc(a1-2)[GalNAc(a1-3)]Gal(b1-3)[HSO3(-6)GlcNAc(b1-6)]GalNAc

Average mass : 995.8

Source: unimod

