

Scientific and Regulatory Perspectives on Mass Spectrometry-based Strategies During Early Stages of Therapeutic Development for COVID-19

Ashutosh Rao, Ph.D.

Chief, Laboratory of Applied Biochemistry Division of Biotechnology Review and Research III Office of Biotechnology Products Office of Pharmaceutical Quality FDA/CDER

CASSS Mass Spec 2021

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

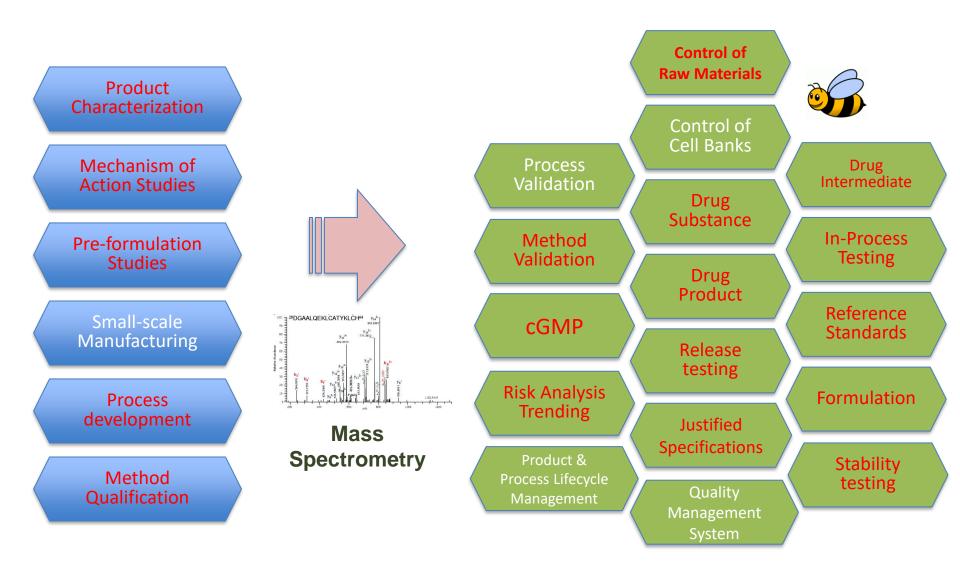
Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Disclaimer

The views and opinions expressed should not be used in place of regulations, published FDA guidances, or discussions with the Agency.

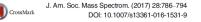

Outline of presentation

- How MS analyses fit into biotech control strategies
- Applications of MS during the characterization and control of biologic drugs
- Current opportunities and challenges with MS in the context of COVID-19

How MS analyses fit into biotech control strategies

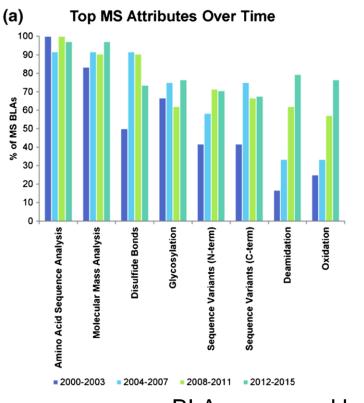
Control strategies for biotech products

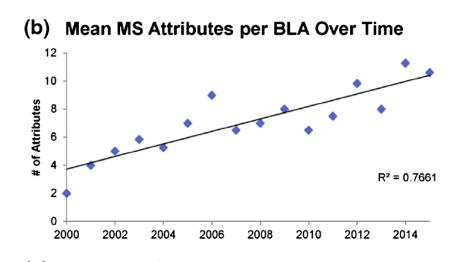
Applications of MS during the characterization and control of biologic drugs


Applications of MS for biotechnology product analysis

- Identification
- Characterization
- Comparability (process change by same manufacturer)
- Comparative analytical assessment (biosimilar vs reference product)
- Surveillance for contamination/adulteration
- Process improvement
- New product knowledge (new critical post-translational modification or other structural attributes)
- PK/PD measurement

© American Society for Mass Spectrometry, 2016


FOCUS: 28th SANIBEL CONFERENCE, CHARACTERIZATION OF PROTEIN THERAPEUTICS BY MS: RESEARCH ARTICLE


A Retrospective Evaluation of the Use of Mass Spectrometry in FDA Biologics License Applications

Sarah Rogstad,¹ Anneliese Faustino,¹ Ashley Ruth,² David Keire,¹ Michael Boyne,² Jun Park³

¹Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA ²Biotechlogic, Inc., Glenview, IL 60025, USA

³Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA

BLAs approved between 2000-2015 using MS

FD

REVIEW

Check for updates

FDA

The role of mass spectrometry in the characterization of biologic protein products

Deepali Rathore^{a,b}, Anneliese Faustino^{*a}, John Schiel^c, Eric Pang^d, Michael Boyne^{a,e} and Sarah Rogstad^a

^aDivision of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA; ^bCenter for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA; ^cBiomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA; ^dOffice of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA; ^eCOUR Pharmaceuticals Development Company, Northbrook, IL, USA

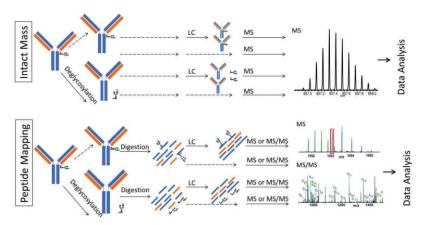


Figure 2. Routine MS-based mAb analysis. Common options for MS analysis of a glycosylated mAb are shown. Analysis can be conducted via either peptide mapping or intact mass analysis. Either of these methods can be completed with or without deglycosylation and LC separation. Deglycosylation can be done using PNGaseF, which cleaves glycans from the protein, while enzymatic digestion breaks the protein down into peptides. Peptides or protein isoforms can then be separated using LC. Intact mass analysis is conducted using full MS scans only; however, additional top-down techniques utilize MS/MS for further sequence information [73]. Adapted with permission from Boyne, Michael T. et al. 'Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval.' *Journal of proteome research* 8.1 (2009): 374–379. *PMC*. Web. 26 July 2016. Copyright 2016 American Chemical Society.

- Sequence fidelity
- Structure, higher order structure
- Post-translational modifications
- Product and process-related impurities

 Table 4. Major MS attributes for analysis. Thirty-two specific MS attributes were found to be analyzed at varying levels across BLAs. Adapted with permission from [48].

MS attribute	% of MS BLAs	MS attribute	% of MS BLAs
Amino acid sequence analysis	97.5	Sequence variants (Amino Acid Substitutions)	8.9
Molecular mass	92.4	Covalent dimers	7.6
Disulfide bonds	77.2	Methionine/Cysteine formylation	7.6
Glycosylation	70.9	Phosphorylation	5.1
Sequence variants (C-term)	64.6	Truncation	5.1
Sequence variants (N-term)	64.6	Acetylation	3.8
Deamidation	58.2	Aggregation	3.8
Oxidation	57.0	Folding/HOS	3.8
Size variants	27.8	Host cell proteins (HCPs)	3.8
Free thiols	25.3	Partial reduction	3.8
Glycation	22.8	PEGylation	3.8
Charge variants	19.0	Translucent particles	3.8
Other impurities	17.7	Zinc	3.8
Proteolysis/ Fragmentation	13.9	Glutathionylation	1.3
Succinimidation	12.7	Methylation	1.3
Isomerization	10.1	Norleucine incorporation	1.3
Other	10.1	Phosphogluconylation	1.3

Biosimilars and Comparative Analytical Assessments

- 100% usage of MS in approved 351(k) BLAs reviewed as of July 2019
- Used for peptide mapping, intact mass, subunit analysis, glycan profiling
- LC-MS, LC-MS/MS, MALDI-TOF, HDX-MS
- Ionization by ESI, LC-ESI, MALDI, nanoESI
- Amino acid sequence, molecular weight, disulfide bonds, PTMs, product- and process-related impurities, higher order structure

^{• &}lt;u>https://www.fda.gov/drugs/biosimilars/biosimilar-product-information</u>

[•] Namuswe F, CASSS MS 2019.

Early product development

• The core regulatory expectation is to demonstrate that the method is fit for the intended purpose

– 21 CFR 211.165(e) and 211.194(a)(2)

- IND-enabling studies to characterize the primary sequence, HOS
- Extended characterization studies to identify variants, impurities related to product and process, other components of drug intermediate, substance and product
- Optimization of purification and production steps where advanced analytics can inform on the identity, criticality and robustness of key product and process attributes

As product development proceeds

- General method development and validation expectations are similar for MS-based methods
 - ICHQ2R(1) and FDA Guidance for Industry on analytical procedures and method validation for drugs and biologics
- Amount of information on method and suitability typically varies with the phase of development and intended purpose
- Setting meaningful specifications that reflect current process knowledge and clinically relevant product lots
 - ICHQ6B
 - FDA MAPP 5017.2 on Establishing Impurity Acceptance Criteria As Part of Specifications for NDAs, ANDAs, and BLAs Based on Clinical Relevance

As product development proceeds

- Lifecycle management
 - Method performance
 - Method changes and revalidation
 - Bridging studies during method replacement
 - Comparison to orthogonal methods
 - Method transfer
 - Reference standard
 - Comparability studies

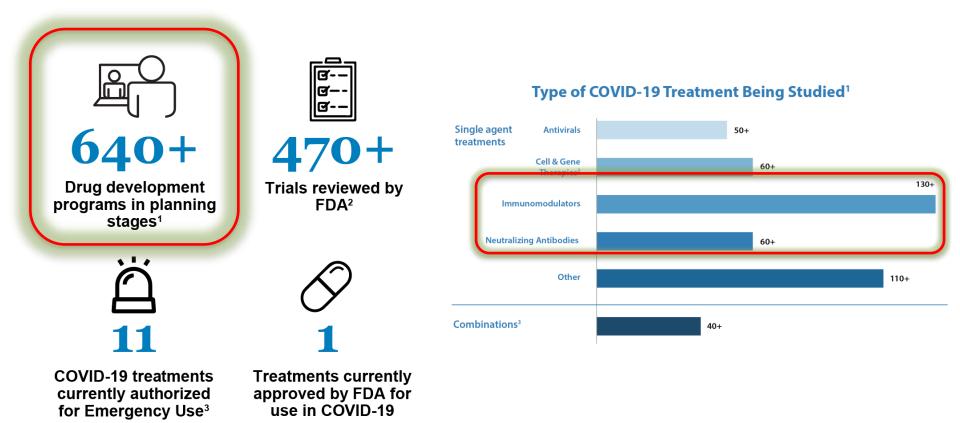
Case study #1

MS for control of a process-related impurity

- A specific host cell protein, critical for the stability of the therapeutic protein.
- CQA is monitored at DS release and stability testing.
- MS provides relative quantitation, compared to reference.
- Specifications are wide but reflect current manufacturing and product knowledge

Sponsor is successfully monitoring this impurity while gaining additional knowledge and preparing for a manufacturing scaleup and comparability study.

Case study #2


MS for control of multiple attributes

- MAM proposed for DS/DP release and stability for multiple attributes/product-related impurities.
- Impurities and attributes are generated by different chemical/degradation/PTM pathways.
- However, insufficient information as provided to support replacing conventional methods with MAM.
- Additional studies were provided to compare with conventional methods with multiple lots and different samples. Extended characterization data was supportive.
- New Peak Detection LOQ/LOD were determined, and function of new peak determined
- The stability indicating nature of the NPD was verified.
- Agency agreed with sponsors strategy to phase out conventional methods over time.

MS in the context of COVID-19 drug development

Coronavirus Treatment Acceleration Program (CTAP)

FDA

FDA Guidance on developing COVID-19 biological products

COVID-19: Developing Drugs and Biological Products for Treatment or Prevention Guidance for Industry

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

February 2021 This document supersedes the guidance of the same title issued on May 11, 2020. Clinical/Medical **Contains Nonbinding Recommendations**

Development of Monoclonal Antibody Products Targeting SARS-CoV-2, Including Addressing the Impact of Emerging Variants, During the COVID-19 Public Health Emergency

Guidance for Industry

February 2021

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research **Contains Nonbinding Recommendations**

Manufacturing, Supply Chain, and Drug and Biological Product Inspections During COVID-19 Public Health Emergency Questions and Answers

Guidance for Industry

August 2020

Updated on May 17, 2021

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Office of Regulatory Affairs (ORA)

https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-related-guidance-documents-industry-fda-staff-and-other-stakeholders

Current opportunities and challenges with MS with respect to product quality

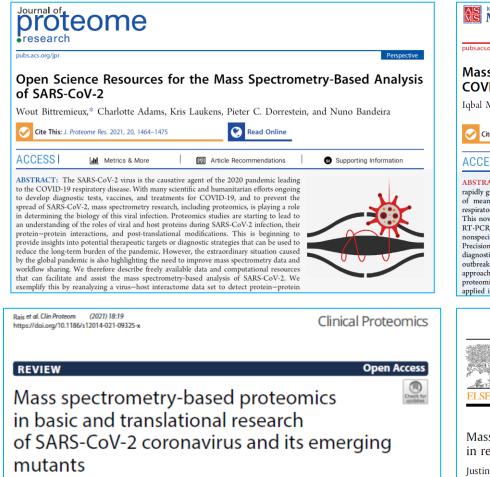
Challenges in the context of COVID-19

- Accelerated timelines
- Rapidly evolving molecular targets and drugs
- Characterization of impurities with unknown biological function
- Availability of key raw materials, reagents, parts, instruments and trained personnel at the right location.
- Rapid manufacturing scale-up to meet supply
 - General information <u>https://www.fda.gov/drugs/drug-supply-chain-integrity/fda-leads-effort-create-supply-chain-security-toolkit-medical-products</u>
 - Guidance <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents/manufacturing-supply-chain-and-drug-and-biological-product-inspections-during-covid-19-public-health</u>
- Site-specific, travel and geographical limitations

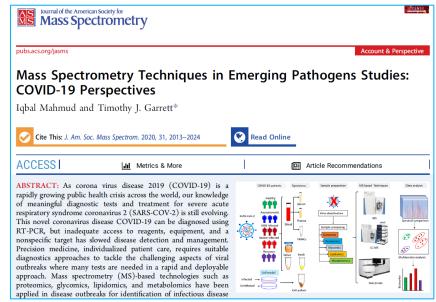
Opportunities for MS in the context of COVID-19

- The selection of analytical methods that have already been qualified or validated. This may include adapting potency assay⁹ formats (including binding assays and/or neutralizing assays) with revised reagents that evaluate new variant protein(s) or pseudotyped virus/virus-like particles in the assay(s)
- The exploration of opportunities for less-experienced manufacturers to partner with those with more experience to leverage all available development tools

- The leveraging of related product quality data (e.g., formulation development) to support in-use stability and compatibility
- The use of prior development experience to anticipate the best dosage form, route of administration, and formulation (composition) selection


https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-related-guidance-documents-industry-fda-staff-and-other-stakeholders

Opportunities for MS in the context of COVID-19



- Selection of methods that have already been qualified or validated.
- The exploration of opportunities for less-experienced manufacturers to partner with those with more experience to leverage all available development tools
- The leveraging of related product quality data (*e.g.* formulation development, host cell protein profile) to support process development, in-use stability, compatibility
- The use of prior development experience to anticipate the best dosage form, route of administration and formulation selection

Other applications of MS in COVID-19

Yasmine Rais, Zhiqiang Fu and Andrei P. Drabovich 💿

	Trends in Analytical Chemistry 142 (2021) 116328	
	Contents lists available at ScienceDirect	
	Trends in Analytical Chemistry	
ELSEVIER	journal homepage: www.elsevier.com/locate/trac	The first of Polya
Mass spectrometry analytical responses to the SARS-CoV2 coronavirus in review		Check for updates
Justin H. Griffin	, Kevin M. Downard [*]	
Infectious Disease Respons	es Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia	

Other applications of MS in COVID-19

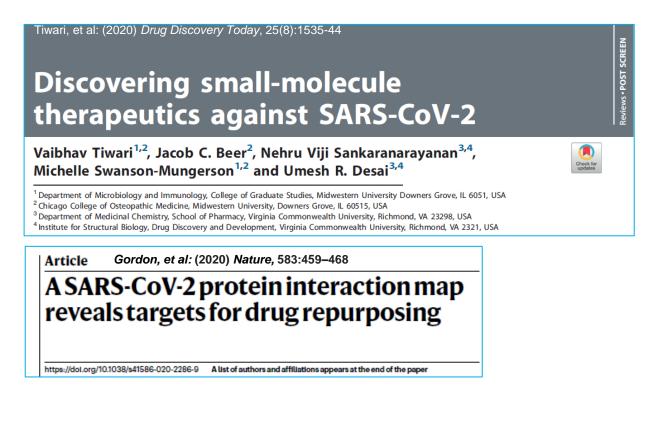
REGEN-COV: LC-MRM-MS (A liquid chromatography-multiple reaction monitoring-mass spectrometry) assay was used to measure the concentrations of REGENCOV in two-dose groups of ambulatory patients.

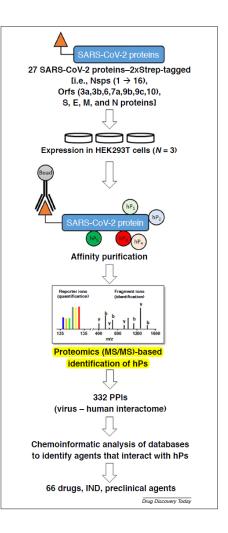
pubs.acs.org/ac

analyt

Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry Assay for Quantitative Measurement of Therapeutic Antibody Cocktail REGEN-COV Concentrations in COVID-19 Patient Serum

Xuefei Zhong,^{||} Shruti Nayak,^{||} Lili Guo, Shivkumar Raidas, Yunlong Zhao, Rachel Weiss, Matthew Andisik, Chinnasamy Elango, Giane Sumner, Susan C. Irvin, Michael A. Partridge, Hong Yan, Sook Yen E, Haibo Qiu, Yuan Mao,* Albert Torri, and Ning Li




Cite This: https://doi.org/10.1021/acs.analchem.1c01613

Other applications of MS in COVID-19

<u>In research and development</u> of small molecule therapies for COVID, an affinity purification-<u>mass spectrometry (MS)</u> approach has been widely used to identify potential inhibitors of SARSCoV-2.

Opportunities for MS in the context of COVID-19

Friday, April 17, 2020

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options

Health agencies, leading pharmaceutical companies to join forces to accelerate pandemic response.

🗟 f 🖌 +

The National Institutes of Health and the Foundation for the NIH (FNIH) are bringing together more than a dozen leading biopharmaceutical companies, the Health and Human Services Office of the Assistant Secretary for Preparedness and Response, the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration and the European Medicines Agency to develop an international strategy for a coordinated research response to the COVID-19 pandemic. The planned Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) partnership will develop a collaborative framework for prioritizing vaccine and drug candidates, streamlining clinical trials, coordinating regulatory processes and/or leveraging assets among all partners to rapidly respond to the COVID-19 and future pandemics. This is part of the whole-of-government, whole-of-America response the Administration has led to beat COVID-19.

"We need to bring the full power of the biomedical research enterprise to bear on this crisis," said NIH Director Francis S. Collins, M.D., Ph.D. "Now is the time to come together with unassailable objectivity to swiftly advance the development of the most promising vaccine and therapeutic candidates that can help end the COVID-19 global pandemic."

Coordinated by the FNIH, ACTIV government and industry partners will

Participating Organizations

Government

- National Institutes of Health
- HHS Office of the Assistant Secretary for Preparedness and Response
- U.S. Food and Drug Administration
- Centers for Disease Control and
 Prevention
- European Medicines Agency

Non-Profit

- Foundation for the National Institutes of Health
- Industry
- AbbVieAmgen

https://www.nih.gov/news-events/news-releases/nih-launch-public-private-partnership-speed-covid-19-vaccine-treatment-options https://www.fda.gov/drugs/coronavirus-covid-19-drugs/coronavirus-treatment-acceleration-program-ctap#dashboard

Institute/Center

NIH Office of the Director (OD)

Contact

NIH News Media Branch⊠ 301-496-5787

Multimedia

NIAID's Novel Coronavirus 19 Flickr album &

Connect with Us

Subscribe to news releases

Acknowledgements

- Frances Namuswe, Ph.D.
- Tere Gutierrez-Lugo, Ph.D.
- Baikuntha Aryal, Ph.D.
- Tongzhong Ju, M.D., Ph.D.
- Sarah Rogstad, Ph.D.
- Colleagues in OBP, OPQ, academia and industry

