

Integrating Mass Spectrometry-Based Footprinting Approaches and Molecular Docking for Protein Binding Interfaces Analysis

<u>Mengru Mira Zhang^{1,Δ}</u>, Brett R. Beno², Richard Y.-C. Huang³, Ekaterina G. Deyanova³, Jing Li³, Guodong Chen^{3,*}, Michael L. Gross^{1,*}

¹ Department of Chemistry, Washington University in St. Louis

² Molecular Structure & Design, Bristol-Myers Squibb

³ Pharmaceutical Candidate Optimization, Bristol-Myers Squibb

2020.08.11

^ACurrent Address: Analytical Sciences, Seattle Genetics * Corresponding authors

Biophysical Approaches in Structural Proteomics

NIGMS MS

Protein Higher Order Structure

- Secondary to quaternary structure
- Diverse biological functionalities

□ Advantages of Mass Spectrometry-Based Approaches

- In-solution characterization
- Small amount of sample (ng μg)
- Sensitive detection with low detection limit
- Fast throughput

Biophysical Approaches in Structural Proteomics

NIGMS MS

Solvent Accessible Surface Area (SASA)

D Protein Higher Order Structure

- Secondary to quaternary structure
- Diverse biological functionalities

□ Advantages of Mass Spectrometry-Based Approaches

- In-solution characterization
- Small amount of sample (ng μg)
- Sensitive detection with low detection limit
- Fast throughput

Mass Spectrometry–Based Footprinting

- Reversible footprinting
- Hydrogen deuterium exchange MS (HDX-MS)
- Irreversible footprinting
- Radical labeling

Ο

- e.g., OH• and RC:
- Targeted labeling e.g., carboxyl group footprinting and chemical cross-linking

Protein Binding Interfaces Analysis by HDX

NIGMS MS

Platform for Protein Binding Interfaces Analysis

NIGMS MS

Limitations of Stand-Alone HDX:

- Spatial resolution limited by proteolysis
- Non-discriminating readout between the direct binding interaction and remote conformational changes

Aim to Establish a Comprehensive Characterization Platform for Protein Binding Interface Analysis

- HDX-MS, reversible footprinting
- Electron transfer dissociation (ETD)
- Chemical cross-linking (XL-MS), irreversible footprinting
- Molecular docking

- Programmed cell death-1 (PD-1), an antigenindependent co-receptor on cell surface
- Nivolumab, one of the FDA-approved immuno-checkpoint inhibitors
- Blockage of PD-1/PD-L1 pathway and restore cell-mediated immunity
- Available crystal structure for final evaluation

Epitope Mapping of PD-1

NIGMS MS

□ HDX of PD-1

- N-loop: ²⁵LDSPDRPWNPPTFSPALL⁴²
- C'D-loop: ⁸⁰AAFPEDRSQPGQDCRF⁹⁵
- FG-loop: ¹²⁵AISLAPKAQIKESL¹³⁸

□ Summarized Epitopes Regions Identified by HDX, HDX-ETD

Characterize PD-1 epitope with an orthogonal approach: chemical cross-linking (XL-MS)

Irreversible Footprinting Approach: XL-MS

XL-MS:

NIGMS MS

□ Multi-Crosslinker Strategy

- **BS³** and **BS²G** : cross-links on side chain of $\mathbf{K} \mathbf{K}$ ٠
- **EDC** : cross-links on side chain of D&E K٠
 - ✓ Larger dynamic range: 5-30 Å
 - Isotope-encoded feature (1:1 of heavy : light) \checkmark

	PD1	Nivo	Cross-linker	Epitope	Paratope	
1	S27 -	K57(H)	BS ² G /BS ³			
2	D26 -	· K57(H)	EDC	N-Loop	CDR-HZ	
3	S27 -	- Y35(L)	BS ³		CDR-L1	
4	S62– N	-term (H)	BS ³	PCLoop	N torminus (H)	
5	E61 — N	-term (H)	EDC	вс-гоор	N-terminus (H)	
6	K135	- K57(H)	BS ³		CDR-H2	
7	K135	– Y35(L)	BS ³	FG-Loop	CDR-L1	
8	K135 —	N-term (H)	BS ³		N-terminal (H)	

Epitope Mapping of PD-1

NIGMS MS

□ HDX of PD-1

- N-loop: ²⁵LDSPDRPWNPPTFSPALL⁴²
- C'D-loop: ⁸⁰AAFPEDRSQPGQDCRF⁹⁵
- FG-loop: ¹²⁵AISLAPKAQIKESL¹³⁸
- BC-loop: ⁵⁶FSNTSESF⁶³

□ Summarized Epitopes Regions Identified by HDX, HDX-ETD and XL-MS (X-ray Structure)

PD-1

FG-loo

Integration with XL-MS and HDX-ETD increase the spatial resolution of stand-alone HDX

Binding Interface Analysis of IL-7 / IL-7Rα

- Interleukins (IL), a group of cytokines
- Bind with their matching receptors, induce the formation of heterotrimer with γ_c

NIGMS MS

• Trigger the JAK/STAT signaling pathway and modulate the development, proliferation and homeostasis of B and T cells

Zhang, M. M. Beno, B. R.; Huang, R. Y-C; Adhikari, J.; Deyanova, E. G.; Li, J.; Chen, G.; Gross, M. L. Anal. Chem. 2019, 91, 15709-15717.

⊳

% Deuterium Difference

No Diff **Cumulative Deuterium Uptake of IL-7Rα HDX Kinetics** EDC 10 E6 – K84 30 а е D1 > -10 < 10 0.5 < 20 IL-7Rα < 30 < 40 -70 No Data -80 -80 10 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 **Residue Number**

IL-7Rα: Region c and e are the binding interfaces

XL-MS of IL-7 / IL-7Rα

5	ource	NIVER	SI	
ы MS	ACTINGION NO.	* * Wettate	*	IN ST. LOL

NIGMS

	IL-7 IL-7Rα	Cross-linker
1	K11 — K84	BS ³
2	K11 - K141	BS ³
3	D75 – K77	EDC
4	K69 – K78	BS ³
5	K152 — K141	BS ³
6 ^{<i>a</i>}	K8 – K84	BS ² G / BS ³
7 ^a	N-term – K84	BS ² G / BS ³
8 ^a	D2 – K84	EDC
9 ^a	D4 – K84	EDC
10 ^{<i>a</i>}	E6 – K84	EDC

- BS³ Linked Cα-Cα Distance: 9 to 30.0 Å
- EDC Linked Cα-Cα Distance : 6 to 16.0 Å

How many cross-links are needed to generate a high-confidence model?

NIGMS MS

Can any two of the cross-links lead to a high-confidence model with info. from HDX?

HDX Adjudication of Docking Models (2XLs)

NIGMS MS

Three Types of Models

Cros	slink-			
Ba	sed	Cluster Size	Category	
Const	raints			
1	_2	10	Type 3	
1	_3	26	Type 1	
1	_4	22	Type 2	
1	_5	11	Type 1	
2_	_3	25	Type 1	
2	_4	10	Type 2	
2_	_5	12	Type 1	
3	_4	15	Type 1	
3	_5	62	Type 1	
4 E	4_5.1	13	Type 1	
4_2	4_5.2	13	Type 2	

✓ Guidance from HDX kinetics allows ruling out dubious docking models

✓ Restraints of two intermolecular cross-links are adequate to identify an accurate quaternary model

Zhang, M. M. Beno, B. R.; Huang, R. Y-C; Adhikari, J.; Deyanova, E. G.; Li, J.; Chen, G.; Gross, M. L. Anal. Chem. 2019, 91, 15709-15717.

رال _ا _		HDX Adjudication of	Docking Models (3-4)	(Ls)		
🗆 SA	SA of Two Pro	otected Regions in Each Model			TITLE C	1853 2 30
U	nbound IL-7	Type 1 (3-4 XLs)	Type 2 (3-4 XLs)			
		IL-7 180°	IL-7Rα 180°	Crosslink-Based Constraints	Cluster Size	Category
			- A	1_2_3	26	Type 1
				1_2_4	26	Type 2
	0	. 0		1_2_5	9	Type 1
¹⁹ VSIDQL ²⁴	230 Å	$138\pm$ 7 Å	230 ± 0 A	1_3_4	28	Type 1
	0		•	1_5 1_4_5	02	Type 1
⁸³ VSEGTTIL ⁹⁰	319 Å	208 \pm 8Å	249 \pm 2 Å	2 3 4	35	Type 1
				2_3_5	56	Type 1
Matching w	ith HDX	Y	Ν	2_4_5	22	Type 1
C .				3_4_5	45	Type 1
Comparison v	with X-ray Struc	ture 1.6 ± 0.1 Å	11 \pm 0Å	1_2_3_4	25	Type 1
				1_2_3_5	59	Type 1
				1_2_4_5	18	Type 2
	./	Mara areas links loads to better served	atad madal turaa	1_3_4_5	58 30	Type 1
	v	J	55	I J PC I		

More cross-links leads to better populated model types

 \checkmark Can identify a high-confidence model with HDX adjudication

✓ One cross-link is insufficient to assign an accurate quaternary structure

✓ The minimal number of cross-links to fulfill this goal is two

Zhang, M. M. Beno, B. R.; Huang, R. Y-C; Adhikari, J.; Deyanova, E. G.; Li, J.; Chen, G.; Gross, M. L. Anal. Chem. 2019, 91, 15709-15717.

Conclusion and Perspective

- Establish an efficient integrated platform for protein-protein binding interface determination
- Characterize successfully the IL-7/IL-7Rα binding interface and PD-1/Nivolumab interaction
- Enable structural information from tertiary to quaternary
- Allow comprehensive understanding of protein interaction events
- Provide an intriguing alternative that would aid the design of protein therapeutics in multiple states

NIGMS MS