Implementation of MAM for Quality Control of Monoclonal Antibody Therapeutics

A Member of the Roche Group

Zhiqi Hao, PhD CASSS Mass Spec Virtual Symposium Sept 15. 2020

Outline

- MAM overview
- Implementation of MAM in clinical QC
 - Method validation for clinical QC
 - Data processing
 - System suitability development
 - Data configuration and data integrity
- Summary

Multi-Attribute Method (MAM) – from Development to QC

A Example of Global vs Specific Attributes

Global (Charge Assay)	Amino Acid Residue Specific (MAM)		
Acidic variants	K65 Glycation		
	K125 Glycation		
	N320 Deamidation		
	N389 Deamidation		
	N394 Deamidation		
	N141 Deamidation		
	S26 Acidic glycan		

- Better understanding of products
- Detection and quantification of specific CQAs in release and stability
- No bridging between product understanding and testing
- The potential of replacing multiple conventional methods

Implementation of MAM (LC-MS/MS based peptide mapping)

- We have been doing this (although we did not call it MAM) in ...
 - Molecule Assessment
 - Process Development
 - PV study
 - CQA assessments
 - etc.
- MAM has been an important method for product development and it is a natural progression that MAM is moving into QC.

Outline

- MAM overview
- Implementation of MAM in clinical QC
 - Method validation for clinical QC
 - Data processing
 - System suitability development
 - Data configuration and GMP compliance
- Summary

Validation Strategy and Design

PQA Category	PQA	Molecule	
Charge (acidic)	A LC N Deamidation	mAb1	
Charge (basic)	A HC D Isomerization	mAb1	
Oxidation	M Oxidation on		
	DTLMISR	MAD2	
Oxidation	M Oxidation on MHEAL	mAb2	
Glycosylation G0F		mAb3, mAb1	
Glycosylation	G1F	mAb3, mAb1	
Glycosylation	G2F	mAb3, mAb1	
Sequence Variant	Sequence variant	mAb2	

8

Characteristic*	Results	
Specificity	Interference <0.1%	
Accuracy: Recovery by Sample Admixture	97-112%	
Linearity	r =1.00	
Repeatability (n=6)	RSD < 5%	
Intermediate Precision (n=12)	RSD < 7 %	
Range	PQA specific	
QL	PQA specific: 0.02 - 2.4%	
Stability in autosampler (change in abundance at	Relative change from T0: -5.7% -	
24-, and 48- hour	4.8%	

* Accuracy by sample loading was assessed during development

* Comprehensive robustness study was performed during qualification and result not included here

Range Used for Each PQA

- Specific to product and PQA
- QC method requirement
 - Product specification
 - Manufacturing capability
- Method / technology capability
 - Recovery from sample prep
 - Recovery from column
 - MS ionization efficiency
 - Interference
- Range used for validation was bases on development experience
 - Level of CQA we need to measure

- 2D resolving power
 - Reverse-phase LC
 - High Res MS with 10 ppm mass tolerance
- Interference
 - Sample matrix and column carryover
 - Needs to be assessed for each PQA
 - Interference (specificity) = peak area in blank/peak area in sample
 - 9 /11 PQAs not detected in buffer blank
 - 2 /11 were detected at 0.05% and 0.01%

EEQYN[M5]STYR(+2), m/z=1204.4740

Relative abundance (expected) (%)

Mean of Relative abundance (%)

* 6 replication injections

** 6 analysts, 2 instruments, 3 column LOTs, 12 tests

Intermediate Precision: Extended Study

Mean of Relative abundance (%)

- Intermediate precision with 47 PQAs:
 - M and W Oxidation
 - Deamidation
 - Succinimide
 - Isomerization
 - Glycosylation
- RSDs of glycans are in general lower than that of other PQA types
- Higher RSD tends to be associated with low abundance (<5%)
- Further improvement may be needed based on method requirement

Robustness, 48 hour Autosampler Stability Demonstrated

Outline

- MAM overview
- Implementation of MAM in clinical QC
 - Method validation for clinical QC
 - Data processing
 - System suitability development
 - Data configuration and GMP compliance
- Summary

- Robust Data Processing Method
 - Low level Isotopic peaks excluded from quantitation
 - Retention time window covering expected variation
 - Use of relative retention time as needed
- Step-by-Step instruction for data processing
- Pre-saved view settings
- Well designed report template

Slide

17

Challenges in Non-Targeted MS Processing (New Peak Detection, NPD)

- Optimization of parameter settings to minimize false positives
 - Retention time shift
 - Mass shift
- Method artifacts vs true "new peak" in products
 - Gas phase complex formed by different peptides
 - Overlapping isotope peaks from different peptides
 - Carryover
- MS expertise needed to identify method artifacts
 - Product specific exclusion list

Outline

- MAM overview
- Implementation of MAM in Clinical QC
 - Method validation for clinical QC
 - Data processing
 - System suitability development
 - Data configuration and GMP compliance
- Summary

Targeted Quantitation System Suitability - Strategy

- To assess the holistic performance of the workflow
 - Sample Prep
 - Chromatography
 - Mass spec
- Qualitative and quantitative characteristics
 - characterized attributes
 - other data quality characteristics
- Acceptance criteria
 - Expected performance
 - Fluctuations in instrument performance
 - Minor variations in sample preparation

20

Parameter	Performance
Mass accuracy of 4 selected peptides	Mass accuracy
Signal intensity for 3 selected peptides eluted across run time	 MS instrument sensitivity Recovery from LC Recovery from sample preparation LC retention time
Relative abundance of an alkylated peptide	Alkylation completenessMS relative quantitation
Relative abundance of a low-level, oxidized peptide	 MS instrument sensitivity MS relative quantitation Stability of oxidized peptides Column aging
Visual inspection of profile	Entire workflow performance
	Genentech

A Member of the Roche Group

Mass accuracy of 4 selected peptides (36 runs)

Variability in Signal Intensity vs PQA Relative Abundance (36 runs)

Genentech A Member of the Roche Group

Outline

- MAM overview
- Implementation of MAM in Clinical QC
 - Method validation for clinical QC
 - Data processing
 - System suitability development
 - GMP compliance and data configuration
- Summary

Informatics with Data Integrity

- Chromeleon 7.2 for data acquisition, processing, reporting
 - Automated data acquisition
 - Semi automated data processing
 - Electronic reporting and reviewing
- 21 CFR Part 11 compliant in terms of electronic records
 - Complete electronic records with embedded system audit trails
 - Access privileges
 - Electronic signatures
- Internal qualification guided by QA to ensure a fully compliant assay including data acquisition, data processing, result reporting

Component	Implementation
Equipment and software qualification	 Hardware and software IQ/OQ SOPs Data integrity and system risk assessment
User account administration	Access for authorized users, user permissions specific to user role
Method validation	Internal validation of method for clinical QC, analyst training
Electronic signature	Chromeleon electronic signature for analyst, reviewer and approver
Audit trial	 Embedded system audit trail within Chromeloen software Internal audit trail review
Data backup	Validated data archival and retrieval

Small Network Configuration Supporting Multiple Instruments and Users

Small network for initial clinical QC implementation

Development and QC instruments in the same network

Comment

Same instrument performing both GMP and non-GMP work

_ = X

Remote instrument operation

haoz1: Validation User

- A MAM targeted quantitation workflow was implemented in clinical QC.
- The method was validated for monitoring of common PQAs and demonstrated acceptable performance for a quantitative, purity assay.
- The targeted MS data analysis requires minimum manual adjustment, while method artifact is one of the major challenges for NPD.
- A comprehensive system suitability was developed to ensure acceptable performance of sample prep, chromatography and mass spectrometry.
- The MAM targeted workflow is ready to be used for clinical product release and stability testing.

Acknowledgements

Development	QC	QA	Leadership	Thermo Fisher Scientific
Benjamin Moore Chengfeng Ren Monica Sadek Frank Macchi	Lindsay Yang Jack Harris Jennifer Moore John De Los Santos Jack Yim Emily Liu Laura Yee	Yunyi Lee Mary Zhu	Chris Yu Galahad Deperalta Sarah Du Kimia Rahimi Yan Chen John Stults David Michels	Royston Quintyn Haichuan Liu Lena Arthur Kimy Young Giulio Pe Reiko Kiyonami Yan Chen
	Vanessa Tran Milady Ninonuevo Louisette Basa		Vikas Sharma Guoying Jiang	