A Novel, Rapid Chip-Based iCIEF-MS Analysis of Therapeutic mAb Charge Variants Under Forced Degradation Conditions and Comparison to Traditional Methods

Daniel Donnelly¹, Xiaoqing Hua¹, Jay Desai¹, Bhumit Patel¹, Wei Chen², Mariam ElNaggar², Maggie Ostrowski², Scott Mack², Erik Gentalen², Douglas Richardson¹ ¹Analytical Research and Development, Merck & Co. Inc., Kenilworth, NJ¹ ²Intabio, Inc., Newark, CA

Background and Challenge Statement

- Charge heterogeneity analysis is essential for the successful development and production of therapeutic antibodies.
- Traditionally, charge variant analysis and peak identification are performed by two separate offline assays (cIEF/IEX and Mass Spectrometry).
- MS identification of a charge variants requires a tedious, multi-step process including fractionation, sample preparation, and off-line MS analysis. Additionally, IEX (which is the current preferred charge variant method at Merck) can suffer from extensive method development, column robustness, and long run times.

- A cIEF-MS platform can turn a multistep (3-4 steps) workflow into a one step analysis
- Following CQA determination by more in-depth methods (RPM) monitoring levels of deamidation or oxidation for extended timepoint studies (e.g., stability, forced degradation) can be done more efficiently

Intabio proprietary microchip technology integrates key iCIEF-MS analytical functions

Blaze real-time Imaged cIEF separation

- Whole column, UV absorbance during focusing & mobilization
- Stepped voltage and current control during focusing enable realtime feedback
- Enables rapid cIEF method development & peak tracking during mobilization

Major degradation pathways of recombinant monoclonal antibodies and Traditional Assays to Monitor them¹

¹Nowak et al (2017) Forced degradation of recombinant monoclonal antibodies: A practical guide, mAbs, 9:8, 1217-1230

Major degradation pathways of recombinant monoclonal antibodies and Traditional Assays to Monitor them¹

¹Nowak et al (2017) Forced degradation of recombinant monoclonal antibodies: A practical guide, mAbs, 9:8, 1217-1230

★ LC/MS ★ cIEF

Combining cIEF and MS analysis can successfully cover all degradation pathways of interest in a single shot.

Outline of cIEF-MS Evaluation of Forced Degradation Study

Traditional cIEF Analysis of Merck mAb using in-house methods following forced degradation conditions.

¹Du, Yi et al. (2012) Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies." *mAbs* vol. 4,5, 578-85.

Major Modification Sites Identified by Reduced Peptide Mapping

	N terminal Pyroglutamat e	Deamidation	Oxidation	Oxidation	C-terminal Lysine Retention
	N-terminus (Q)	Asparagine #1	Methionine #1	Methionine #2	C-terminus (K)
No Stress (411)	97.9	3.2	0.5	2.2	9.2
H50 –D0 (412)	97.9	3.4	0.7	2.0	8.3
H50 – D1 (413)	97.8	3.9	0.8	2.2	8.3
H50 – D3 (414)	97.4	3.6	0.9	2.4	8.6
H50 – D7 (415)	97.6	4.8	1.0	3.2	9.1
LG – 0X (417)	97.5	4.0	1.0	2.8	8.6
LG – 0.5X (418)	97.5	3.8	3.6	17.2	8.7
LG – 1X (419)	97.5	4.1	7.2	39.7	7.4
OT001 – H0 (420)	97.6	4.0	0.9	2.2	7.0
OT001 – H6 (421)	97.2	3.9	1.1	5.2	7.8
OT001 – H24 (422)	97.5	4.3	2.3	19.2	7.6
P10 – D0 (423)	97.6	4.4	1.0	3.6	7.7
P10 – D1 (424)	97.3	11.0	1.0	3.3	7.7
P10 – D3 (425)	97.5	23.7	1.0	3.9	7.4
P10 – D7 (426)	97.4	42.8	1.0	4.0	7.0

>95% sequence coverage

Major Modification Sites Identified by Reduced Peptide Mapping

	N terminal Pyroglutamat e	Deamidation	Oxidation	Oxidation	C-terminal Lysine Retention
	N-terminus (Q)	Asparagine #1	Methionine #1	Methionine #2	C-terminus (K)
No Stress (411)	97.9	3.2	0.5	2.2	9.2
H50 –D0 (412)	97.9	3.4	0.7	2.0	8.3
H50 – D1 (413)	97.8	3.9	0.8	2.2	8.3
H50 – D3 (414)	97.4	3.6	0.9	2.4	8.6
H50 – D7 (415)	97.6	4.8	1.0	3.2	91
LG – 0X (417)	97.5	4.0	1.0	2.8	8.6
LG – 0.5X (418)	97.5	3.8	3.6	17.2	8.7
LG – 1X (419)	97.5	4.1	7.2	39.7	7.4
OT001 – H0 (420)	97.6	4.0	0.9	2.2	7.0
OT001 – H6 (421)	97.2	3.9	1.1	5.2	7.8
OT001 – H24 (422)	97.5	4.3	2.3	19.2	7.6
P10 – D0 (423)	97.6	4.4	1.0	3.6	7.7
P10 – D1 (424)	97.3	11.0	1.0	3.3	7.7
P10 – D3 (425)	97.5	23.7	1.0	3.9	7.4
P10 – D7 (426)	97.4	42.8	1.0	4.0	7.0

Major Modification Sites Identified by Reduced Peptide Mapping

	N terminal Pyroglutamat e	Deamidation	Oxidation	Oxidation	C-terminal Lysine Retention
	N-terminus (Q)	Asparagine #1	Methionine #1	Methionine #2	C-terminus (K)
No Stress (411)	97.9	3.2	0.5	2.2	9.2
H50 –D0 (412)	97.9	3.4	0.7	2.0	8.3
H50 – D1 (413)	97.8	3.9	0.8	2.2	8.3
H50 – D3 (414)	97.4	3.6	0.9	2.4	8.6
H50 – D7 (415)	97.6	4.8	1.0	3.2	9.1
LG – 0X (417)	97.5	4.0	1.0	2.8	8.6
LG – 0.5X (418)	97.5	3.8	3.6	17.2	8.7
LG – 1X (419)	97.5	4.1	7.2	39.7	7.4
OT001 – H0 (420)	97.6	4.0	0.9	22	7.0
OT001 – H6 (421)	97.2	3.9	1.1	5.2	7.8
OT001 – H24 (422)	97.5	4.3	2.3	19.2	7.6
P10 – D0 (423)	97.6	4.4	1.0	3.6	7.7
P10 – D1 (424)	97.3	11.0	1.0	3.3	7.7
P10 – D3 (425)	97.5	23.7	1.0	3.9	7.4
P10 – D7 (426)	97.4	42.8	1.0	4.0	7.0

Change in acidic variant abundance as seen is cIEF analysis can most likely be attributed to deamidation at the PENNY peptide

Blaze iCIEF-MS Analysis of Charge Variants – Non-stressed Control

Blaze iCIEF-MS Analysis of Charge Variants – Non-stressed Control

- Mass shifts of 162 Da denote the galactose series of GOF, G1F and G2F glycans
- Basic charge variants with a mass addition of 128 Da correspond to unprocessed lysine(s)
- Acidic charge variants correspond to sialic acid additions

INTABIO

Blaze iCIEF-MS Analysis of Non-stressed Control Main Peak Putative Modifications

Blaze analysis of the 3 light stressed conditions shows comparable cIEF profiles to Merck cIEF analysis

Comparable Quantitation of Blaze ciEF with Merck In-House Data

Blaze iCIEF-MS Analysis OX Control

Blaze iCIEF-MS Analysis of 0.5X Light Stress Shows 1-2 Oxidation Sites

Blaze iCIEF-MS Analysis of 1X Light Stress Shows 3-4 Oxidation Sites

Comparison of Oxidation Levels by iCIEF-MS vs. Peptide Mapping

Light Stressed samples	% of oxidized protein measured with blaze CiEF-MS analysis	% of oxidized amino acid residue with blaze CiEF- MS analysis	Average % oxidized Methionine (Methionine #1 & Methionine #2) with RPM	% of oxidation of Methionine #1 (RPM)	% of oxidation of Methionine #2 (RPM)
OX	2.81%	2.53%	1.90%	1.00%	2.80%
0.5X	20.16%	13.59%	10.40%	3.60%	17.20%
1x	36.65%	25.56%	23.45%	7.20%	39.70%

Increase in Dimer Species is observed by iCIEF-MS in Light Stress Material and Verified with Size Exclusion Chromatography

iCIEF Analysis of High pH Samples on Blaze vs. in-house iCIEF

Blaze iCIEF-MS Analysis of all Charge Variants - High pH Day 7

Common Acidic Modifications					
Sialic Acid					
Deamidati	Deamidation				
Trisulfide bo	onds				
Thiosulfide Mod	ification				
Cysteinylat	ion				
Free thio	s				
Fragment	S				

- Succinimide 2X higher in high pH day 7, compared to control.
- No additional shift in mass from acidic to main peak identified suggesting presence of deamidation (+1 Da, unresolved on TOF instrument), agreeing with RPM data.

Conclusions

- 1. Complete Blaze iCIEF-MS analysis in < 20 minutes
- 2. Rapid method develop and easy method transfer from legacy iCE instruments, <1 day
- 3. iCIEF electropherograms from Intabio Blaze analysis and in-house analysis are comparable throughout control and all stressed conditions.
- 4. Analysis of non-stressed material identifies expected modifications including glycosylation series (G0F/G0F, G0F/G1F, etc), unprocessed lysines, loss of GlcNAc, and sialic acid additions.
- 5. iCIEF-MS analysis of light-stressed samples identifies increasing oxidative states of mAb (1-4 oxidation sites). Total amount of oxidation observed generally matches RPM analysis. Increase in the presence of dimer is observed across all electrophoretic peaks of 1X light-stressed material.
- 6. RPM identified one main deamidation site in high-pH stress (Day 7). cIEF data shows an increase in acidic peaks but intact mass unable to resolve +1 Da mass shift. Analysis on higher resolution MS may better resolve this mass shift.

Acknowledgements

Merck Team: Intabio Team:

Daniel DonnellyWei ChenXiaoqing HuaMariam ElNaggarJay DesaiErik GentalenBhumit PatelMaggie OstrowskiDoug RichardsonKristine BissellLena WuWally Ausserer

Scott Mack

The National Institute for Innovation in Manufacturing Biopharmaceuticals

