

Resolving Complex Impurity Isomers in Synthetic Oligonucleotides by High Resolution Mass Spectrometry

Kui Yang

Division of Pharmaceutical Analysis (DPA) FDA/CDER/OPQ/OTR

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Outline

Challenge in impurity analysis of synthetic oligonucleotides – Composite impurity mixtures

- High resolution mass spectrometry in differentiating isomeric impurities
 - High resolution tandem mass spectrometry (HR MS/MS)
 - Ion mobility mass spectrometry (IMMS)
- Summary and Q&A

Synthetic Therapeutic Oligonucleotides – an evolving therapeutic class

- Target a broad range of mRNAs that encode critical cellular proteins ("undruggable")
- "Big small molecules", unique scientific and regulatory challenges
- Currently no ICH or FDA regulatory guidelines

(a) Deprotection, (b) Coupling, (c) Sulfurization, (d) Capping, (e) Cleavage, deprotection, purification, isolation

Importance of impurity profile testing

Challenging:

Structural complexity, large size, high number of negative charges, presence of numerous diastereoisomers

FDA

Impurity analysis by LC/MS

FD

Examples of positional isomers

TCACTTTCATAATGCTGG (18-mer)

Family	Sub-family	max # of isomeric components
Total n-1	n-MOE G	2
	n-MOE A	3
	n-MOE Me-C	4
	n-MOE Me-U	5
Total n+1	n+MOE G	2
	n+MOE A	3
	n+MOE Me-C	4
	n+MOE Me-U	5
Full-length (P=O)1		17
Dithioate		17
Total Abasic	n-guanine+H2O	3
	n-adenine+H2O	4
	n-methylcytosine+H2O	4
Deaminated		4

14

14

77

Potential applications of resolving composite positional isomers

- Manufacturing process optimization and control
- Batch-to-batch reproducibility assessment
- Impurity formation mechanism, leading to higher purity oligonucleotide drugs

Custom synthesized representative isomers

DNA sequence: TCACTTTCATAATGCTGG (18-mer)

<u>n-T isomers</u>:

n-T_1: CACTTTCATAATGCTGG n-T_2: TCAC TTCATAATGCTGG n-T_3: TCACTTTCA AATGCTGG n-T_4: TCACTTTCATAA GCTGG n-T_5: TCACTTTCATAATGC GG

Outline

- Challenge in impurity analysis of synthetic oligonucleotides Composite impurity mixtures
- High resolution mass spectrometry in differentiating isomeric impurities
 - High resolution tandem mass spectrometry (HR MS/MS)
 - Ion mobility mass spectrometry (IMMS)
- Summary and Q&A

To address isomer challenge • Approach I: HR MS/MS

Figure 1: PRM parallel reaction monitoring. Precursor mass filtering in Q1 is followed by fragmentation in the HCD cell and high resolution/high mass accuracy (HR/HA) fragment ion detection in the Orbitrap mass analyzer.

https://proteomicsresource.washington.edu/tools/PRM.php

MS/MS fragments

Fragmentation pathways of oligonucleotides

Characteristic fragments

n-T isomers:

Optimizing collision conditions

- better fragment coverage and intensity

Parameters tested include:

- ✓ Collision type (CID vs HCD)
- ✓ Collision energy (20%, 25%, 30%)
- ✓ Charge states (single vs multiplexing)
- ✓ Mass resolution (15K vs 30K)

MS/MS of individual isomers

- identifying fragments: characteristic and high intensity

m/z

Identified fragments (characteristic and high-intensity)

Extracted ion chromatogram (EIC) of identified fragments

n-T_1

FDA

Extracted ion chromatogram (EIC) of identified fragments

EIC areas of identified fragments:

- normalized to that of the common fragment

n-T_1 & n-T_5 & mixture

Normalized EIC areas: Experimental vs Calculated

n-T_2&4, 1:1

Hold true for binary mixtures of isomers at different ratios

n-T 2&4, 1:3

FD)

27

Mixture composition prediction: using "Solver" (Excel)

Mixture composition prediction: using "Solver" (Excel)

Mixture compositions: True vs Predicted

■ n-T_1 ■ n-T_2 ■ n-T_3 ■ n-T_4 ■ n-T_5

What to conclude?

- Combination of normalized EIC areas of characteristic fragments (fingerprints) of individual isomers reflects the composition in their composite mixture.
- May be used to compare isomer distribution profiles during manufacturing process or from batch to batch (quality control), or in generic equivalents.

What next?

Other types of positional isomers in addition to deletion/addition sequences: (PO)₁ impurities, deaminated, abasic ...

- Challenge in impurity analysis of synthetic oligonucleotides Composite impurity mixtures
- High resolution mass spectrometry in differentiating isomeric impurities
 - High resolution tandem mass spectrometry (HR MS/MS)

Ion mobility mass spectrometry (IMMS)

Summary and Q&A

To address isomer challengeApproach II: IM MS

IM MS of synthetic sequence isomers

IM MS and MS/MS of mixture of isomers

Alignment of fragments with precursor ions by drift time

Zoomed IM MS/MS of mixture of isomers

- clarifying fragments for each isomer

x10.4 0.8 0.6 0.4 0.2 858.5 859 859.5 0.08 860.5 861 861.5 862 862.5 863 863.5 864 864.5 865 865.5 338 866.5 867 867.5 868 868.5 869 869.5 870 Counts vs. Mass-To-Charge (m/z) 30.0-29.5

IM on vs off

- ✓ IM (drift-time) → Additional dimension of separation
- ✓ Fragments assigned to drift-time separated isomeric precursors

MS/MS spectral clarity = Better sequence ID 37

IM on vs off

Outline

- Challenge in impurity analysis of synthetic oligonucleotides Composite impurity mixtures
- High resolution mass spectrometry in differentiating isomeric impurities
 - High resolution tandem mass spectrometry (HR MS/MS)
 - Ion mobility mass spectrometry (IMMS)
- Summary and Q&A

Challenge in impurity analysis: composite nature

High Resolution MS/MS:

- ✓ Characteristic fragments (fingerprints)-based differentiation of isomers by tandem MS analysis
- ✓ Combination of normalized EIC areas of characteristic fragments (fingerprints) of individual isomers reflecting the isomeric ratio in the mixture

Ion Mobility MS and MS/MS:

- ✓ Shape-based separation of isomers by drift time
- ✓ Fragments aligned by drift time of isomeric precursors enabling MS/MS spectral clarity

Acknowledgement

- Asha Hewarathna (FDA ORISE fellow)
- Connie Ruzicka (Branch Chief)
- David Keire (Division Director)
- Larry Lee (Office Director)
- CDER Oligo working group (Project Manager: Laura Pogue, OTR-lead: Kui Yang)

