

A Single Approach (LITPOMS) Reveals Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin

Roger Liu, Mengru Mira Zhang, Don L. Rempel, Michael L. Gross

09/19/2019

Measuring P-L Binding Affinity

$$K_a = \frac{k_{on}}{k_{off}} = \frac{[PL]}{[P][L]}$$

$$K_d = \frac{k_{off}}{k_{on}} = \frac{[P][L]}{[PL]}$$

Concentration Measurement

Fluorescence Polarization, Circular Dichroism, NMR, FT-IR

Rate Constant Measurement

Surface Plasmon Resonance

Thermodynamic Measurement

Specific sample preparation Limited spatial resolution

Isothermal Titration Calorimetry (Heat flow during titration)

How could Mass Spectrometry contribute?

Willams, M. A.; Daviter, T. Protein-Ligand interactions, Methods and Applications, 2nd ed.; Humana Press: New York, 2013
 Weis, D. D. Hydrogen Exchange Mass Spectrometry of Proteins, Fundamentals, Methods, and Applications; Wiley: Chichester, 2016

SUPREX and PLIMSTEX

[Melittin]_{total}/[CaM]_{total}

<u>Stability of Unpurified Proteins from Rates</u> of H/D <u>Ex</u>change

<u>Protein-Ligand Interactions by Mass Spectrometry,</u> <u>Titration, and H/D Exchange</u>

- Universal to various systems, low sample quantities, no special labeling, site-specific
- Backexchange, complicated picture by ligand off-rate and long H/D exchange time

Fast Photochemical Oxidation of Proteins (FPOP) & Mass Spectrometry

Protein-Ligand Interaction by Ligand Titration, Fast Photochemical Oxidation of Proteins and Mass Spectrometry: LITPOMS

LITPOMS of Mel & Holo-CaM at Global Level

LITPOMS of Mel & Holo-CaM at Peptide Level

Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. J. Am. Soc. Mass Spectrom. 2019, 30, 213-217

LITPOMS of Mel & Holo-CaM at Peptide Level

- Binding stoichiometry of 1 : 1
- Identified three binding sites: **14-30**, **107-126** & **127-148**
- Binding affinity (K_d) of 4.6 ± 2.7 nM (comparing with literature value of 3 nM)

 ^[1] Comte, M.; Maulet, Y.; Cox, J. A. Biochem. J. **1983**, 209, 269-272
 [2] Schulz, D. M.; Ihling, C.; Clore, G. M.; Sinz, A. Biochemistry **2004**, 43, 4703-4715
 [3] Zhang, H.; Gau, B. C.; Jones, L. M.; Vidavsky, I.; Gross, M. L. Anal. Chem. **2011**, 83, 311-318
 [4] Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. J. Am. Soc. Mass Spectrom. **2019**, 30, 213-217

Calmodulin & Calcium in Tris – 1:4 System

- Found in all eukaryotic cells
- Major Ca²⁺ signaling pathway, regulating multiple intracellular process: cell growth, proliferation, apoptosis
- Four EF-hands with "helix-loop-helix" configuration
- Ca²⁺ binds to calcium loop through chelating with negatively charged residues
- Binding affinity of μM , sensitive to stimulations
- Hint of cooperativity / allosteric behavior during binding

Koniwa, H.; Tjandra, N.; Grzesiek, S.; Ren, H.; Klee, C. B.; Bax, A. *Nat. Chem. Biol.* **1995**, *2*, 768-776
 Chattopadhyaya, R., Meador, W.E., Means, A.R., Quiocho, F.A. *J. Mol. Biol.* **1992**, *228*, 1177-1192
 Linse, S.; Helmersson, A.; Forsen, S. J. Biol. Chem. **1991**, *266*, 8050-8054
 Sorensen, R.; Shea, M. A. *Biochemistry* **1998**, *37*, 4244-4253

LITPOMS of Ca²⁺ & CaM at Global Level

- A more extended confirmation upon binding with calcium
- A decrease in modification fraction indicates a potential binding event
- A promising preliminary check before peptide & residue-level analysis

LITPOMS of Ca²⁺ & CaM at Peptide Level

Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. Anal. Chem. 2019, 91, 5508-5512

Class I Behavior – Loss of Protection

- Loss of protection upon binding with calcium, reporting the overall structural transition
- Linker region between EF-hands / more exposed helices

Class II Behavior – Constant Protection

- Constant protection upon binding with calcium
- Linker region between EF-hands / F-helix of EF-1

Class III Behavior – Classical Binding

• More protected upon binding with calcium, a classical binding behavior

•

F-Helix

Class IV Behavior – Composite Behavior

• Binding & Allostery (Conf. change by a remote binding event)

A Summarized Coverage Map

- A 99% sequence coverage
- Four classes of behaviors
 - Reveals composite behavior of calmodulin **<u>during</u>** binding with calcium

Allosteric Behavior / Binding Dynamics

- EF-4 (127-148) binds first, followed by a conformational change over helix F (more exposed)
- EF-2 (38-74) becomes more exposed owing to binding at EF-3 (91-106) and EF-4 (127-148),
 preparing them for Ca²⁺ binding
- EF-2, 3 and 4 become more exposed at high Ca²⁺ to facilitate binding at EF-1 (14-30)
- Calmodulin is saturated at [Ca²⁺] / [CaM] = 15

Dissect Composite LITPOMS by Chymotrypsin

- Tryptic Peptide 127-148 covers EF-4 of calmodulin
- Chymotryptic peptides 125-138 and 139-145 show simple behavior of binding and opening

[1] Liu, X. R.; Rempel, D. L.; Gross, M. L. Anal. Chem. Under Review
[2] Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. Anal. Chem. 2019, 91, 5508-5512

Dissect Composite LITPOMS by Residue-Level Analysis

- Tryptic Peptide 38-74 covers EF-2 of calmodulin
- Residue M51 show deprotection initially, followed by binding induced protection and stay protected

Binding Order by LITPOMS

Site - Specific Binding Affinity

• Four distinct binding affinities through fitting

Binding Order	EF-hand	LITPOMS K _i (M ⁻¹)	Literature K _i (M ⁻¹)
1	EF-4 (127-148)	1.4×10^{6}	8.0×10^{4}
2	EF-3 (91-106)	6.2×10^{6}	4.0×10^{6}
	C-Term Lobe	8.6 × 10 ¹²	3.2×10^{11}
3	EF-2 (38-74)	4.1×10^{4}	2.5×10^{4}
4	EF-1 (14-30)	2.9×10^{6}	4.0×10^{5}
	N-Term Lobe	1.2×10^{11}	1.0×10^{10}

• Agree with literature values within 20-fold

[3] Linse, S.; Helmersson, A.; Forsen, S. J. Biol. Chem. 1991, 266, 8050-8054

^[1] Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. Anal. Chem. 2019, 91, 5508-5512

^[2] Weis, D. D. Hydrogen Exchange Mass Spectrometry of Proteins, Fundamentals, Methods, and Applications; Wiley: Chichester, 2016

Conclusion

- LITPOMS reveals the <u>composite behavior</u> and allostery of calmodulin upon binding with calcium
- March through the protein region-by-region, characterize binding at peptide & residue level
- Composite LITPOMS behavior can be dissected by a different protease or by analyzing residuelevel LITPOMS curves
- Successfully demonstrate the capability of dealing with
 - Systems with various binding stoichiometries
 - Systems with binding affinities of μ M to nM (both loose and tight binders)
 - Systems that bind with small peptides
 - Systems that bind with metal ions
- Readily applicable to other systems with complex binding schemes, e.g., signaling proteins

^[1] Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. J. Am. Soc. Mass Spectrom. 2019, 30, 213-217

^[2] Liu, X. R.; Zhang, M. M.; Rempel, D. L.; Gross, M. L. Anal. Chem. 2019, 91, 5508-5512

^[3] Liu, X. R.; Rempel, D. L.; Gross, M. L. Anal. Chem. Under Review

Acknowledgement

National Institute of5P41GM103422General Medical Sciences1S100D016298-01A1

Thank You!