

Biophysical Characterization of "Stapled" Single Chain Antibodies for Multispecific Biotherapeutics

Steven Jacobs

Sr. Director Biophysics & Molecular Attributes, Therapeutics Discovery Janssen R&D

Tumor cells expressing 'danger signal', a mechanism for anti-cancer activity by natural killer cells

Credit: Xiefan Lin-Schmidt, Exploratory Biology, Therapeutics Discovery

Janssen Research & Development, LLC ©2022 JRD, LLC

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Increasing Emphasis on Multispecific Antibody Formats in Clinical Development and Discovery

Non-cancer Indications (b) (a) utics therapeutics 80 80-Full length 70-70 Immunoconjugate ŝ 60 -60 Fragment 50 ÷ 50 antibody Npo Mixture 40 40. antib 30 Bispecific 30 5 20 20 ď Number Number Antibodies to Watch publication year

Kaplon et al. 2023 https://doi.org/10.1080/19420862.2022.2153410

Biswas et al. 2023 https://doi.org/10.1080/19420862.2023.2207232

Cancer Indications

Antibodies to Watch publication year

Increasing Reliance on Subcutaneous Delivery and High API Concentrations Challenges Multispecific Formats

Biswas et al. 2023 https://doi.org/10.1080/19420862.2023.2207232

Many Novel Multispecific Antibody Formats Rely on Single Chain Antibody (scFv) Building Blocks

Engineering and optimization of scFv molecules, a 25-year-old problem:

> > Immunotechnology. 1997 Jun;3(2):83-105. doi: 10.1016/s1380-2933(97)00067-5. Review

New protein engineering approaches to multivalent and bispecific antibody fragments

A Plückthun¹, P Pack

Wörn & Pluckthun, 1999. DOI: (10.1021/bi9902079)

Biswas et al. 2023 https://doi.org/10.1080/19420862.2023.2207232

PHARMACEUTICAL COMPANIES OF (Johnson 4 Johnson

scFv Containing Molecules Are Consistently More Prone to Aggregation Than Fab-based Molecules at Higher Concentrations

AUC

"Stapling" of scFv Fragments To Stabilize Against **Concentration and Temperature Induced Aggregation**

Hypothesis:

Solution: Stapled scFv

Design goals:

- Prevent scFv breathing and resultant aggregation
- Universal solution for all scFv molecules
- Retain biological potency and critical quality attributes
- No disulfide mispairing or unwanted side products

Location of Anchor Positions and Rigid Linker Region Designed To Prevent Disulfide Scrambling

- Disulfide Bonds, PDB
- HL stapling
- LH stapling

- Disulfide Bonds, PDB
- DS1
- -- DS2

Stapling Increases Conformational Stability Through Disulfide Bond Formation

Melting Temperature Increase by ~ 12 °C

Tm increases are independent of orientation and linker length

Structural Validation

X-ray crystallography

Molecule name	Orientation	scFv	spFv	ΔTm	∆∆H kcal/mol	spFv Linker Length
Glk2 (κ)		F7 0	<u> </u>	40.7	40.5	10
	LH	57.9	68.6	10.7	18.5	18
	HL	57.3	64.7	7.5	10.5	14
CAT2200 (λ)						
	LH	57.2	68.8	11.6	52.3	17
	HL	55.9	67.4	11.5	54.1	17
scFv1 (κ)	LH	59.7	71.6	11.9	53	18
	HL	57.0	68.6	11.5	64	18

VS

Differential Scanning Calorimetry

spFv Staple Forms a Consistent Structure **Within Multiple Antibodies**

spFv HL unbound (blue, green) vs. spFv LH bound (silver)

spFv HL unbound (blue, green) vs. scFv LH bound (silver)

spFv Forms Proper Disulfides in Bispecific Antibody Format

10

Bispecific Aggregation at High Concentrations is Alleviated by Stapling

150 mg/mL thermal stress scFv Bispecific 97 98 scFv Bispecific 100 80 % Species 60 40 20 0 release 155-4C-T0 100-4C-2W spFv Bispecific spFv Bispecific 97 98 100 Species 80 60 40 % Viscosity 100 mg/mL: 20 0 scFv Bispecific = 3.6 cP release 155-4C-T0

spFv Bispecific = 2.9 cP

AUC

- % Monomer
- % Dimer
- %Trimer

PHARMACEUTICAL COMPANIES OF (Johnson 4 Johnson

Improvements to Aggregation Without Compromising Other Critical Attributes of a Bispecific

PHARMACEUTICAL COMPANIES O

lohnson allohnson

spFv Retains Biological Potency of scFv **Parent Bispecific Molecule**

spFv Bispecific

Stapling Consistently Improves Thermal Induced Aggregation of scFv Molecules in Complex Formats

Stability after 40°C Incubation @ > 50 mg/mL

(lohnson 4 Johnson

Acknowledgements

Jeffrey Luo Gabriel WC Cheung Partha Chowdhury Rupesh Nanjunda Sam Wu Fang Yi Samantha Heyne Natasha Kozlyuk Rob Davidson Brian Del Rosario Adam Zwolak Neeraj Kohli Tun Liu **Bingyuan Wu** Robin Ernst Sagit Hindi

Mike Feldkamp Eilyn R. Lacy James Testa Elsa Gorre Andrew Mahan **Alexis Gervais** Anthony Armstrong Elsie Samakai And many others!

Former Janssen: Lauren Boucher Alexey Teplyakov Chichi Huang

