

Bristol Myers Squibb

Ion Mobility-Mass Spectrometry and Collision Induced Unfolding of Bispecific Antibody Therapeutics

<u>Rosendo C. Villafuerte-Vega¹</u>, Henry Li¹, Thomas Slaney², Naresh Chennamsetty², Guodong Chen², Li Tao², and Brandon T. Ruotolo¹

¹Department of Chemistry, University of Michigan, Ann Arbor, MI 48109

²Bristol Myers Squibb, New Brunswick, NJ 0890

Higher Order Structure: Next Generation Investigators April 5, 2022

Bispecific Antibodies (BsAbs): Impact and Challenge

- Proper heterodimerization important for specificity and functionality
- Different chain combinations leads to chain association issue

- Antibody (mAb)
 therapeutics are
 structurally
 complex and highly
 dynamic
- Susceptible to PTMs and degradation products

- Increase in heterogeneity and impact higher order structure (HOS)
- Small structural changes impact product safety, functionality, and efficacy
- Comprehensive characterization of HOS needed
 for candidate assessment and selection

Klein, C. et al. *mAbs*, 2012, *4*(6), 653 – 663. Labrijn, A. F. et al. *Nature Reviews Drug Discovery*, 2019, 18, 585 – 608.

Analytical Tools for mAb Characterization

Sample Preparation/Time

Limitations of CCS as structural probes

Collision Induced Unfolding (CIU)

Adapted from Dixit, S. M., et al., *Curr. Opin. Chem. Biol.*, 2018, 42, 93 – 100.

UNIVERSITY OF MICHIGAN | 10

- Feature detection quantifies centroid drift times (or CCS) corresponding to a unique conformation present across multiple collision voltages
- Root-mean-squared deviation (RMSD) analysis calculates
 global differences between two CIU fingerprints
- CIU50 analysis models the transition region between features as a logistic function
 - Quantifies midpoint voltage between adjacent features termed "CIU50" value

 Comparisons of CIU50 values between different samples can provide insights on protein stability and susceptibility to gas-phase unfolding

23+

24+

Charge State

25+

IgG2-based, **knob-into-hole** (KiH) bispecific \rightarrow one disulfide bond mutated out

- Knob: T366W
- Hole: T366S, L368A, Y407V

IM-MS of BsAb and parental constructs

BsAb and parental construct CCS

- CCSs overlap substantially
 - Antibodies are dynamic and occupy a wide range of structural forms!
 - Slight differences attributed to variability in molecular weight
- Limited HOS information based on CCS alone!

CIU of BsAb_and parental constructs

CIU of BsAb and parental constructs

CIU of BsAb and parental constructs

Impact of deglycosylation on CIU transitions

Impact of deglycosylation on CIU transitions

Removal of glycans known to destabilize CH₂ domain in Fc region

CIU of Knob and Hole "Halfmers"

CIU of BsAb Fab and Fc

Average fingerprints for charge state 13 + shown (n = 3)

Putting it all together...

- Trends in global conformational stability consistent across intact, halfmer, and Fab fragment data
- Unmodified Knob component is less susceptible to unfolding per CIU50-1 analysis

- Fc is globally more stable than individual Fab components
- Deglycosylation leads to greater destabilization in the second unfolding transition per CIU50-2 analysis
- Unmodified Hole component less susceptible to unfolding

Conclusions and Future Directions

- IM-MS combined with CIU permitted us to make structural connections between BsAb and its parental homodimer constructs
- Accomplished annotation of unfolding pathways using a middle level approach as well as patterns in deglycosylated samples
- Able to probe which component of the BsAb was unfolding
- Next step: expanding the IM-MS and CIU pipeline to BsAbs produced using other technologies

Acknowledgements

Ruotolo Group

- Prof. Brandon T. Ruotolo
- Dr. Varun Gadkari
- Dr. Cara D'amico
- Kristine Parson
- Carolina Rojas Ramirez
- Yilin Han
- Brock Juliano
- Chae Kyung Jeon
- Iliana Levesque
- Anna Anders
- Devin Makey
- Steven DeFiglia
- Victoria Tran
- Henry Li
- Joe Keating
- Mengdao Li

Bristol Myers Squibb

- Dr. Thomas Slaney
- Dr. Guodong Chen
- Dr. Li Tao
- Dr. Naresh Chennamsetty

UNIVERSITY OF MICHIGAN 26