Manufacturing challenges and rational formulation development for AAV viral vectors

Arvind Srivastava, Ph.D., Technical Fellow, Avantor Inc.

Higher Order Structure, 6 April 2022

Agenda

O1 O2 O3 O4

AAV structure AAV manufacturing workflow Challenges in AAV manufacturing unit operations Rational formulation design

AAV structure

AVV viral vectors are delicate and complex molecule; therefore, requires careful manufacturing process design

AAV viral vector manufacturing workflow

 Manufacturing of AAVs is a complex process that requires several upstream, downstream, and fill/finish operations

Types of capsids generated during AAV production

Source: Gimpel et. al. Mol Ther Methods Clin Dev. (2021),20:740-754

Challenges during upstream process

Plasmid development

- Lot-to-lot variability in yield and purity
- Cost of plasmid DNA

Cell expansion

- Adherent cell culture is difficult to scale up and to monitor cell conditions
- Suspension cell cultures provide scalability; however, produce lower cell densities compared with adherent cells

Plasmid transfection

- Three-plasmid transfection system can be inefficient, as not all cells receive optimal ratios of the plasmids required for efficient packaging
- The most widely used polyethyleneimine (PEI) is toxic to producing cells and its performance is sensitive to changes in pH

Challenges during downstream process

Cell lysis

- Virus particle aggregation and precipitation during cell lysis
- Triton X-100 is listed for "substance of very high concern list" by the European Chemicals Agency under REACH regulations.

Filtration

- Cell lysis generates significant amount of cell debris, which is difficult to pass through filters
- Virus particles may aggregate/lose functionality as a result of shear stress during the filtration process

Platform purification

- Low virus yield due to the lack of robust purification processes
- Serotype dependent strategy to achieve optimal yield while maintaining product potency and integrity

Separation of empty from full capsids

- CsCl gradient method is difficult to scale-up and intolerant of operator errors
- Virus particle damage due to extreme elution condition and low yield due to overlap between empty and full capsid peaks in IEC chromatogram

Challenges during formulation and fill/finish

Product degradation

Physical degradation

Chemical degradation

Aggregate/fragments

Unfolding

Oxidation

Disulfide formation/exchange

Particulate/precipitates

Surface adsorption

Deamidation

Isomerization

Fill/finish

- Virus particle aggregation and particulate formation as a result of shear stress during fill/finish operations.
- Filling facilities commonly used for manufacturing small volume gene therapy products are semi-automated, raising sterility concerns due to crimping and sealing errors

Viral vector stability

Source: Rodrigues, et. al. Pham. Res (2019),2:1-20

Source: Wright et. al. Mol Ther. (2005),12:171-178

 AVV are unstable products; therefore, it must be formulated carefully for an optimal performance

Factors that could affect viral vector stability

- Thermal stress

 - HeatFreezing
- Freeze-thaw stress
- **Mechanical stress**
 - ShearingShaking
- Light
- pН
- Oxygen
- **Surface contact**

Loss of infectivity

Genome leak

Loss of particle integrity

Immunogenicity

Approaches to viral vector stabilization

Complexity

Low temperature storage

Addition of stabilizing excipients

Drying (Lyophilization)

Chemical modification

Rational formulation design using excipients

- Buffer/pH
- Salts
- Surfactants
- Amino acid
- Sugars
- Other additives

Effect of buffer type and pH on thermal melting of AAVs

Source: Bennett et. al. Mol Ther - Methods Clin Dev. (2017),6:171-182

Source: Pacouret et. al. Mol Ther. (2017),25):1375-1386

- Thermal melting temperature (Tm) depends on AAV serotype
- No single buffer condition or pH is optimal for all serotype

Effect of pH and temperature on transduction of AAVs

- Highest transduction efficiency occurs between pH 7.4 and 6.0
- rAAV5 was the most susceptible to low pH storage conditions

Source: Lins-Austin et. al. Viruses. (2020),12(6):1-18.

Effect of salt type/concentration of AAV aggregation

- Salt reduces particulate size, suggesting aggregate inhibition due to ionic strength
- Aggregation is mediated by electrostatic interactions
- Multivalent salts (MgCl₂) are more effective than monovalent (NaCl)

Source: Wright et. al. Mol Ther. (2005),12:171-178

Effect of surfactant on the mechanical stability

and surface absorption of AAV particles

Source: Bennicelli et. al. Mol Ther. (2008),16:458-465

Source: Patrício et. al. Mol Ther Methods Clin Dev. (2020),17:99-106

Surfactant prevents shear induced aggregation/ precipitation and surface absorption of AAV particles

Effect of osmolytes on AAV stability

SEC 10x F/T % Impurity by E8 5% Propylene glycol FA 5% mamitol FT O. 19/0 Pluronic F68 635% Hehalose 5525% proline

Source: Xu et. al. Int. J. Pharm. (2022),615: 121464

Polyols, amino acids and surfactants can stabilize AAVs

Thank you

