

Characterising Protein Structure with HDX-MS: Improving Resolution with IMS-MS and Electron-based Fragmentation

Suraj Dhungana, Ph.D.

Director Americas Pharmaceutical Market Segment

Biophysical Tools for Characterizing Higher Order Structure

HDX-MS: Changes in protein structure and dynamics Solvent accessibility and hydrogen bonding

- ✓ Small protein amounts
- ✓ No chemical labeling of protein
- ✓ Limit unwanted structural perturbations
- Relatively quick turnaround time vs other techniques

Uses for HDX-MS

Changes in protein structure/dynamics

Confirming higher order structure

Target protein binding site identification / specificity Mode of Action (screening) Binding affinity / dynamics Epitope mapping—design and mechanism of action

Structural impact of post-translational modifications

Biosimilar structural analysis

Characterizing reversible selfassociation/aggregation

Waters

THE SCIENCE OF WHAT

Stability (PTM effects)

HDX to Characterize the Architecture and Self-assembly of Sars-CoV-2 Nucleocapsid Protein

THE SCIENCE OF WHAT

'S POSSIBLE

Comparative Analysis with Previously Characterized Viral Proteins

- Secondary structure and solvent accessibility across an entire protein
- Loop regions showed increased exchange rates, consistent with their flexibility
- "systematically examine the epitopes"

HDX for SARS-CoV-2 S protein: ACE2—Reveals Novel Allosteric Targets THE SCIENCE OF WHAT'S POSSIBLE."

Conformational dynamics of prefusion spike (S) protein trimer

Map of receptor binding domain (RBD) isolated:angiotensinconverting enzyme 2 (ACE2) interactions

6 RESEARCH ARTICLE

Waters

Raghuvamsi, Tulsian, et al. eLife 2021;10:e63646. DOI: https://doi.org/10.7554/eLife.63646

SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets

Palur V Raghuvamsi^{1,2†}, Nikhil K Tulsian^{1,3†}, Firdaus Samsudin², Xinlei Qian⁴, Kiren Purushotorman⁴, Gu Yue⁴, Mary M Kozma⁴, Wong Y Hwa⁵, Julien Lescar⁵, Peter J Bond^{1,2}*, Paul A MacAry⁴*, Ganesh S Anand^{1,6}*

(cc)

HDX-MS for mAbs and Covid-19 Target Protein Binding

The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans

YUEH-MING LOO 🙃 , PATRICK M. MCTAMNEY 🔞 . ROSALINDA H. ARENDS 🙃 . MICHAEL E. ABRAM 🙃 . ANASTASIA A. AKSYUK, SEME DIALLO 💿 , DANIEL J. FLORES. ELIZABETH J. KELLY 🍈 , KUISHU REN, [_] MARK T. ESSER 👩 (+22 authors) <u>Authors Info & Affiliations</u> Protein Footprinting, Conformational Dynamics, and Core Interface-Adjacent Neutralization "Hotspots" in the SARS-CoV-2 Spike Protein Receptor Binding Domain/Human ACE2 Interaction

Dominic Narang, D. Andrew James,* Matthew T. Balmer, and Derek J. Wilson*

HDX Useful for Biotherapeutics

"Developments in Hydrogen/Deuterium Exchange Mass Spectrometry" J Engen et al. Analytical Chemistry. Oct 28, 2020

- Vaccines, therapeutics
- HOS, Epitope mapping

HDX use in New Modalities

Conformational Assessment of Adnectin and Adnectin-Drug Conjugate by Hydrogen/Deuterium Exchange Mass Spectrometry

Richard Y.-C. Huang,¹ Steven R. O'Neil,² Daša Lipovšek,² Guodong Chen¹

analytical chemistry

ated Approach for Character

Integrated Approach for Characterizing Bispecific Antibody/ Antigens Complexes and Mapping Binding Epitopes with SEC/ MALS, Native Mass Spectrometry, and Protein Footprinting

Richard Y.-C. Huang.^{*} Feng Wang, Matthew Wheeler, Yun Wang, Robert Langish, Bryant Chau, Jia Dong, Winse Morishige, Natalie Bezman, Pavel Strop, Arvind Rajpal, Olafur Gudmundsson, and Guodong Chen^{*}

Article

State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis

Evolène Deslignière ^{1,2}⁽⁰⁾, Anthony Ehkirch ^{1,2}, Bastiaan L. Duivelshof ^{3,4}, Hanna Toftevall ⁵, Jonathan Sjögren ⁵⁽⁰⁾, Davy Guillarme ^{3,4}, Valentina D'Atri ^{3,4}, Alain Beck ⁶⁽⁰⁾, Oscar Hernandez-Alba ^{1,2} and Sarah Cianférani ^{1,2},*

analytical chemistry

Article pubs.acs.org/ac

Article

THE SCIENCE OF WHAT'S POSSIBLE."

Antibody Structural Integrity of Site-Specific Antibody-Drug Conjugates Investigated by Hydrogen/Deuterium Exchange Mass Spectrometry

Lucy Yan Pan,* Oscar Salas-Solano, and John F. Valliere-Douglass

Typical HDX-MS workflow

Dilute sample into D_2O

Typical HDX-MS workflow

Digest

HDX: Pausing for Fundamentals

Goal: Structural Resolution

Most information from the sample better the structural resolution

How?

- Reversable Isotopic labeling of accessible H with D
- Use rate of exchange to measure accessibility/flexibility in structure

Fast Analysis to Capture all Relevant Information

- Striving for high separation in fast chromatography
- Add ion mobility to increase analytical peak capacity
- Sensitivity for capture of low abundant species
- Isotopic fidelity
- Complementary fragmentation techniques

Challenge

Scrambling, back-exchange

Alternate

Covalent modification

 Risk of unwanted structural perturbations

Ion Mobility Increase Peak Capacity

Increased Separation and Clean Detection of Deuterium Mass Shifts

6 min gradient +Ion Mobility 3.00 1.00 5.00 7.00 9.00 11.00 Time (min) 100-101021_UCA114_MDS_23 1.17E+4HDMSe 00:10:00 616.366 Da (+1) 90 -+2.14 Da 80 -70 -Relative Intensity (%) 60 -50 -40 -30 -20 -10-0-5 617 616 618 619 620 622 623 624 625 626 626.8 614.9 621 m/z

<u>mAb 150 kDa</u>

©2022 Waters Corporation

HDX on Cyclic IMS-MS

- Step Wave XS
 - Improved sensitivity
- Improved IMS resolution
 - Multiple passes
- Dual-gain Detector
 - Enhanced mass resolution & accuracy
 - 。 > 60K V-mode
 - > 100K W-mode
 - Extended dynamic range
- Multiple Fragmentation Options
 - CID and ECD

T-WAVE ABBAY

EXTENDED Tof

DUAL STAGE REFLECT

HDX on Cyclic IMS

- Increased peptide ID
- Increase sequence coverage
- Reduced back exchange

Cyclic IMS data collected in HDMS^E mode (Ion Mobility enabled DIA—default mode for peptide analysis)

©2022 Waters Corporation

Cyclic IMS: Additional Sequence Coverage

Improved Detection of Low Intensity Peptide

High quality spectra with peptide identification only obtained by the SELECT SERIES Cyclic IMS

High Ion Mobility Resolutions for Separating Deuterated Peptides in a Mixture

After five passes, four species were observed in the Arrival Time Distribution (ATD)

IM Separated Deuterated Peptides in a Mixture

Improved separation provides information rich clearer spectra

5 passes

Cyclic IMS: Detector Dynamic Range

Example: An intense peptide found in both SYNAPT G2-Si data and Cyclic IMS data

Zoomed-in spectra of isotopic peaks:

Dual gain ADC offers extended dynamic range and ensures correct peak intensities in the output spectrum

Improving Peptide Fragmentation and Limiting Deuterium Scrambling Waters

Electron transfer dissociation (ETD)

Electron Capture Dissociation (ECD)

Rhenium ECD filament

ECD unit from eMSion

Heated Rhenium filament produces electrons, which are captured by analyte ions as they pass through causing fragmentation

Peptide P1 ECD Fragmentation No IMS

Waters

THE SCIENCE OF WHAT'S POSSIBLE."

ECD of PhosB Peptides from Online Pepsin Digests

Waters

Higher Structural Resolution From ECD

Conclusions

Cyclic IMS provides significantly improved structural resolution

Increased sequence coverage / number of peptides / redundancy for HDX

Improved sensitivity and suggested reduction in back exchange

ANALYTE SPRAY

BACKING PUM

Higher Mobility Resolution

- Contributes to increased sequence coverage / no. of peptides
- Resolving differently charged overlapping isotopic envelopes

Increased detector dynamic range

- Dual gain ADC detector provides increased dynamic range
- Improvement in isotopic fidelity for improved automatic peak detection
- Increased range of useable peptide intensities

ECD

- High quality fragmentation of deuterated peptides on the LC timescale
- **Provide higher Structural Resolution**

THE SCIENCE OF WHA

EXTENDED Tof

Acknowledgement

•

Lindsay Morrison

- Waters
- Alexandre Gomes

Malcolm Anderson

Owen Cornwell

Waters