

Five Computational Developability Guidelines for Therapeutic Antibody Profiling

Matthew Raybould Oxford Protein Informatics Group University of Oxford

Next-Generation Investigator Session, HOS2021

Common Antibody Developability Issues

- Many different *in vitro* assays to test for each of these issues
- However, the time/quantity of monoclonal antibody (mAb) needed to experimentally test for each of these is often prohibitive in early-stage development
- Therefore, desire to generate *in silico* assays that can rapidly filter out mAb drug candidates with poor developability

in silico developability assessment tools (2018)

1. Various algorithms for "humanness" assessment *via* comparison to natural antibody sequences

2. Statistically-fit predictors of *in vitro* assay values (e.g. *CamSol, Developability Index,* FvCSP) or sites of post-translational modification

No publicly-available method that captured general developability

The Therapeutic Antibody Profiler:

A structure-based, in silico method for rapidly detecting mAbs with poor developability

Assumptions

- Many instances of poor developability are caused by the chemical properties of a region of the antibody surface.
- The most variable region between antibodies is the **Fv region**, so we analyse this region alone
- The best way to measure Fv surface properties is *via* a **structural representation**
- A set of these properties may offer some predictive power to identify more "drug-like" antibodies, *cf.* Lipinski rules
- We assume that therapeutics that have reached Phase-II of clinical trials have acceptable developability

Requirements

- We must be able to identify poor developability mAbs in a high-throughput manner
- This necessitates using **homology models** over *ab initio* models or crystal structures

Five properties:

- 1. CDRH3 or Total CDR length [aggregation, flexibility, topology]
- 2. Patches of Surface Hydrophobicity (PSH) across the CDR Vicinity [aggregation, viscosity, polyspecificity]
- 3. Patches of Surface Positive Charge (PPC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
- 4. Patches of Surface Negative Charge (PNC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
- 5. Structural Fv Charge Symmetry Parameter [aggregation, viscosity]

Datasets:

137 Post-Phase I Therapeutic Models¹

Sets the **acceptable bounds** of the five properties

14k Representative Human Antibody Models^{2,3}

Provides a "natural antibody comparison" 2 Datasets of MedImmune Developability Failures

Used to **validate** that we can selectively highlight mAbs with developability issues

¹Jain T, *et al*. (2017) Biophysical properties of the clinical-stage antibody landscape. *Proc Natl Acad Sci USA* 114(5):944–949.

²Vander Heiden JA, et al. (2017) Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J. Immunol. 198:1460–1473.

³Raybould, MIJ *et al.* (2019) Five computational developability guidelines for therapeutic antibody profiling. *Proc Natl Acad Sci USA* 116(10):4025-4030.

Comparisons: Therapeutics vs. Human Antibodies

CDRH3 Length

- Therapeutics tend to have shorter CDRH3s and smaller patches of surface hydrophobicity than human antibodies

Comparisons: Therapeutics vs. Human Antibodies

Patches of Surface Positive Charge (PPC)

- Therapeutics and human Abs have similar sizes of positive charge and negative charge patches

Patches of Surface Negative Charge (PNC)

Comparisons: Therapeutics vs. Human Antibodies

Structural Fv Charge Symmetry Parameter (SFvCSP)

- Both therapeutic and human antibodies have an aversion to strongly oppositely-charged VH and VL chains

Validation

- Found a further 105 post-Phase I therapeutic sequences, as "developable antibodies"
- Only 8/105 were assigned by TAP to have a property outside the existing distributions. Most (except PPC) were minorly adjusted:

Property	Red Threshold (137 Phase-II+ therapeutics)	Red Threshold (242 Phase-II+ therapeutics)
Total CDR Length (Lower)	39	39
Total CDR Length (Upper)	59	60
PSH (Lower)	85.64	83.34
PSH (Upper)	168.30	173.85
PPC	1.51	3.16
PNC	3.50	3.50
SFvCSP	-19.50	-20.40

Validation

M-1912 aggregated uncontrollably during development, and exhibited extremely high values in our CDR Vicinity PSH metric.M-1912STT resolved the issue.

A001 had prohibitively poor expression levels, and exhibited extremely high values in our CDR Vicinity PNC metric.

A-DDEN fixed the issue (backbone engineering)

TAP Developability Guidelines

Values based on 242 clinical-stage therapeutic antibodies as of Feb' 2019

	(Below/Above)	(Bottom 5%/Top 5%)	
These metrics could be	Red Flag Region	Amber Flag Region	Metric
rapidly calculated:	L < 39	$39 \le L \le 43$	Total CDR Length
Device a sub-set of a discovery	L > 60	$54 \le L \le 60$	
- During early-stage discovery	PSH < 83.84	$83.84 \le PSH \le 100.71$	PSH, CDR Vicinity
- During <i>in silico</i> affinity maturation	PSH > 173.850	$156.200 \le \text{PSH} \le 173.850$	
	PPC > 3.16	$1.25 \le PPC \le 3.16$	PPC, CDR Vicinity
to help select mAbs more amenable	PNC > 3.50	$1.84 \le PNC \le 3.50$	PNC, CDR Vicinity
to therapeutic development	SFvCSP < -20.40	$-20.40 \le \text{SFvCSP} \le -6.30$	SFvCSP

NB: Metric values for therapeutics can change as model quality improves

Notes

- The TAP thresholds are now set by *c.* 400 CSTs in Phase-II+ development. We actively track these in Thera-SAbDab (http://opig.stats.ox.ac.uk/webapps/therasabdab). Thresholds have proven robust to the addition of more data.
- Typical runtime for TAP is < 30s/antibody on a single core (if all loops are homology-modellable)
- The TAP metrics were chosen to be developability-linked and interpretable. With sufficient "negative" data, they could be more systematically derived. As could the amber/red threshold percentile values
- The TAP metrics are **guidelines**, not strict rules. They could change over time with advances in process development
- These principles could be extended to other classes of protein therapeutics

The Therapeutic Antibody Profiler is described in our paper in PNAS¹

¹Raybould, MIJ et al. (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 116(10):4025-4030.

Software Availability

• Free OPIG Webserver

(http://www.opig.stats.ox.ac.uk/webapps/tap)

bb ID: TAP_example		
bb contraction to		
tinished! tatus:		
.og file:		
IV. JE COMPERENT TE DODR T1.900 - LEMMING ON T COLOER11.		•
Jonnery Statistics for FV11		
INOT HI Length: 13 Number of loops unclusterable into canonical forms: 2, of which:		
0 were because FREAD failed 2 were because the FDD could not be found in the SADDab reference dictionary (Dec 2018)		
Total INUT CDR Length: 52 (GREEN Flag) Patch CDR Surface Hydrophobicity score in: 155.550300 (GREEN flag)		
Patch CDR Postive Charge score is: 0.100000 (Units Ting) Patch CDR Negative Charge score is: 0.104030 (GMEDN flag) SCufCP score is: 0.100000 (SCECM flag)		
		¥
Results		
Results		
Gummary		
Results Summary Metric	Value and Flag Colour	PSH Metric = Patches of Surface Hydrophobicity Metric; PPC Metric = Patches of
Results Summary Hetric Iotal CR Length	Value and Flag Colour 52	PSH Metric = Patches of Surface Hydrophobicity Metric; PPC Metric = Patches of Positive Charge Metric; PNC Metric = Patches of Negative Charge Metric; SFvCSP
Results Summary Metric Total CRE Length DR Victinity PSH Score (Myte & Deolittle)	Value and Flag Colour 52 155-5983	PSH Metric = Patches of Surface Hydrophobicity Metric, PPC Metric = Patches of Positive Charge Metric, PNC Metric = Patches of Negative Charge Metric, SFvCSP = Structural Fv Charge Symmetry Parameter.
Kesults Summary Herric Drall CR Length CRR Vicinity PSR Score (Kyte & Doolittle)	Value and Fing Colour 52 155-5983 0.0	PSH Metric = Patches of Surface Hydrophobicity Metric; PPC Metric = Patches of Positive Charge Metric; PNC Metric = Patches of Negative Charge Metric; SFvCSP = Structural Fv Charge Symmetry Parameter.
Results Summary Metric Dist Vicinity PBI Score (Nyte & Deslittle) DBI Vicinity PDC Score DBI Vicinity PDC Score	Value and Flag Colour 52 155.5983 0.0 0.1411	PSH Metric = Patches of Surface Hydrophobicity Metric; PPC Metric = Patches of Positive Charge Metric; PNC Metric = Patches of Negative Charge Metric; SFvCSP = Structural Fv Charge Symmetry Parameter. Formulae for each metric are provided in the TAP paper.

If data is IP-sensitive...

- Vagrant VirtualBox
- Coming Soon: Singularity Container

Acknowledgements

With special thanks to my supervisors:

Dr Claire Marks (Oxford), Dr Bruck Taddese (AZ), Dr Alan Lewis (GSK), Dr Alex Bujotzek (Roche), Dr Jiye Shi (UCB), Prof Charlotte Deane (Oxford)

And to my DPhil funders: EPSRC, MRC, the Systems Approaches to Biomedical Sciences CDT (Oxford) & partner companies

And to the organisers of CASSS HOS2021 for inviting me to speak as a "Next-Generation Investigator"

Supplementary Slides

Making a set of "representative human antibody" models

Next-Generation Sequencing data

Protocol used in TAP metric comparison described in PNAS 116(10):4025-4030

Most recent protocol described in PLoS Comput. Biol. 17(3):e1008781 Sequence cluster to reduce complexity

VH sequences

Pair antibodies with high interface identity to a solved antibody

Structurally cluster based on most homologous CDR templates

Splitting Therapeutics by Kappa/Lambda LCs

Dataset	TAP Metric	Kappa Subset ($\mu \pm \sigma$)	Lambda Subset ($\mu \pm \sigma$)	
242 CST Models	PSH	120.89 ± 15.10	142.03 ± 19.09	Models containing
	PPC	0.21 ± 0.47	0.53 ± 0.56	Lambda light chains
	PNC	0.38 ± 0.64	0.60 ± 0.77	seemed inherently
	SFvCSP	$\textbf{3.82} \pm \textbf{7.38}$	1.67 ± 7.87	less 'developable'
14,072 VdH Ig-seq Models	PSH	131.27 ± 21.41	141.68 ± 17.82	than those containing
	PPC	0.17 ± 0.40	0.52 ± 0.73	kappa light chains
	PNC	0.27 ± 0.48	0.74 ± 0.83	
	SFvCSP	$\textbf{4.56} \pm \textbf{7.44}$	$\textbf{0.84} \pm \textbf{6.48}$	(90% of CSTs involve
19,019 UCB Ig-seq Models	PSH	$\textbf{125.40} \pm \textbf{18.56}$	139.66 ± 17.88	kanna light chains)
	PPC	0.11 ± 0.31	0.31 ± 0.53	
	PNC	0.22 ± 0.40	0.65 ± 0.88	
	SFvCSP	3.67 ± 5.30	0.12 ± 5.24	

Table S5. TAP values across kappa and lambda models.

• Consistent with DeKosky et al. (Lambda L3's much more hydrophobic than Kappa L3's)

DeKosky BJ, et al. (2016) Large-scale sequence and structural comparisons of human naïve and antigen-experienced antibody repertoires. Proc Natl Acad Sci USA 113(19):E2636–E2645.

Splitting Therapeutics by Species Origin

Table S8. 242 CST TAP values split by species origin.	
---	--

TAP Metric	101 Human ($\mu\pm\sigma$)	108 Humanized ($\mu \pm \sigma$)	30 Chimeric ($\mu \pm \sigma$)	3 Mouse ($\mu \pm \sigma$)
Total CDR Length	48.68 ± 4.09	47.80 ± 3.42	46.77 ± 3.55	$\textbf{46.33} \pm \textbf{1.25}$
PSH	127.76 ± 18.56	120.90 ± 14.20	115.73 ± 15.58	117.26 ± 9.44
PPC	0.29 ± 0.58	0.20 ± 0.36	0.26 ± 0.55	0.05 ± 0.06
PNC	0.34 ± 0.56	0.50 ± 0.75	0.30 ± 0.63	0.50 ± 0.50
SFvCSP	4.06 ± 7.44	$\textbf{3.13} \pm \textbf{7.80}$	$\textbf{3.29} \pm \textbf{5.99}$	$\textbf{7.58} \pm \textbf{6.75}$

- Appears that the more human mAbs have larger patches of hydrophobicity than mouse mAbs
- We also split by clinical progression (P2, P3, Approved) and drug campaign status (active/discontinued) but found no significant differences in TAP metric values.