A SITE OF VULNERABILITY IN THE SARS-COV-2 SPIKE N-TERMINAL DOMAIN

MATTHEW MCCALLUM

HIGHER ORDER STRUCTURE (HOS) 2021

APRIL 15, 2021

THE SARS-CoV-2 PANDEMIC HAS BEEN DEVASTATING

Source: Johns Hopkins University CSSE COVID-19 Data

THE SARS-CoV-2 PANDEMIC HAS BEEN DEVASTATING

Source: Johns Hopkins University CSSE COVID-19 Data

THE SARS-CoV-2 PANDEMIC HAS BEEN DEVASTATING

Antibody therapy works, but must used early

Emergence of variants threatens both

SARS-COV-2 USES A SURFACE SPIKE PROTEIN TO ENTER CFLLS

Spike ACE2 Protease

Source: Janet Iwasa, https://animationlab.utah.edu/cova

SARS-COV-2 USES A SURFACE SPIKE PROTEIN TO ENTER <u>CELLS</u>

Opening allows proteases to trigger the fusion process

ANTIBODIES CONFER NEUTRALIZING IMMUNITY

One neutralizing antibody previously shown to bind the NTD – how common is this?

SORTING B-CELLS BY SPIKE-BINDING

Does not bind Spike

IDENTIFYING NTD-BINDING ANTIBODIES FROM THREE DONORS

Each patient harbored potent neutralizing NTD antibodies

SAMPLE PREPARATION FOR ELECTRON CRYOMICROSCOPY

STRUCTURE OF NEUTRALIZING FAB FROM EACH DONOR

S2L28, S2M28, and S2X333 bind the same site or "supersite"

McCallum & De Marco et al. 2021. Cell In press

MAPPING NTD ANTIGENIC SITES BY BINDING COMPETITION

All neutralizing antibodies bind the supersite,

while all non-neutralizing antibodies bind other sites

Anna De Marco (McCallum & De Marco et al. 2021. Cell In press)

MAPPING NTD ANTIGENIC SITES BY CRYOEM

All neutralizing antibodies bind the supersite, while all non-neutralizing antibodies bind other sites

BINDING (FLOW-CYTOMETRY) OF OTHER CORONAVIRUSES

The supersite is not conserved so binding is low outside of close relatives

IDENTIFICATION OF POLYMORPHISMS IN THE SPIKE

The NTD is the most variable segment of the spike The supersite is especially variable: L18F, Y144del, H146Y, D253G/Y, S254F, and S255F have > 0.1 % prevalence

BINDING (ELISA) OF POLYMORPHISMS IN CIRCULATING VARIANTS

Escape mutations are evidence that the virus is under pressure from NTD antibodies, which supports that the NTD antibodies are a key component of immunity

CHALLENGING HAMSTERS WITH SARS-CoV-2 INFECTION

S2X333 anti-NTD antibody protects hamsters from SARS-CoV-2 challenge Deletions including Y144 were selected for; these hamsters were not protected

Davide Corti (McCallum & De Marco et al. 2021. Cell In press)

VSV-PSEUDOTYPE SELECTION EXPERIMENTS

W258 R

MASS SPECTROMETRY ANALYSIS OF S12P MUTANT

S12P delays signal peptide cleavage, causing a *de facto* C15del mutation

Should we expect signal peptide mutations in circulation?

Alex Chen (McCallum & De Marco et al. 2021. Cell In press)

THE CALIFORNIA (B.1.429/B.1.427) VARIANT PREVALENCE

The B.1.429/B.1.427 variant is taking over in California

Julia Di Iulio (McCallum, Bassi, De Marco, Chen, Walls, et al. 2021. BioRxiv)

CALIFORNIA VARIANT NEUTRALIZATION

The California variant is comparable to the South Africa in terms of neutralization evasion

Mary-Jane Navarro (McCallum, Bassi, De Marco, Chen, Walls, et al. 2021. BioRxiv)

CALIFORNIA VARIANT ANTI-RBD NEUTRALIZATION FVASION

RBD mAbs

McCallum, Bassi, De Marco, Chen, Walls, et al. 2021. BioRxiv

CALIFORNIA VARIANT ANTI-NTD NEUTRALIZATION FVASION

Variant evades ALL anti-NTD neutralizing antibodies (owing to S13I and W152C mutations in NTD)

McCallum, Bassi, De Marco, Chen, Walls, et al. 2021. BioRxiv

MASS SPECTROMETRY ANALYSIS OF S13I/W152C MUTANT

S13I delays the signal peptide cleavage

This breaks C15-C136 disulfide bond

The W152C mutation forms a new disulfide bond with C136

The NTD supersite is a key component of immunity

Concerning antibody escape mutations have emerged altering the supersite

FUTURE DIRECTIONS: TARGETING NON-RBD SITES WITH VACCINATION

INTRODUCING A DISULFIDE BOND TO CLOSE THE SPIKE

Disulfide bond could be introduced stapling the RBDs closed

McCallum, et al. 2020. Nat Struct Mol Biol 27, 942-949.

BINDING ASSAYS (ELISAS) WITH DISULFIDE STAPLED SPIKF

Stapled closed spikes have reduced binding to some RBD binding antibodies

McCallum, et al. 2020. Nat Struct Mol Biol 27, 942-949.

VACCINATION OF MICE WITH A DISULFIDE STAPLED CLOSED SPIKE

SARS-CoV-2 spike protein arrested in the closed state induces potent

neutralizing responses

David A. Wells, Xiaoli Xiong, Ernest T. Aguinam,
Stephen H. McLaughlin, Donna Mallery, Soraya Ebrahimi, Lourdes Ceron-Gutierrez, Leo C. James,
Rainer Doffinger, Donathan L. Heeney, Dohn A. G. Briggs

doi: https://doi.org/10.1101/2021.01.14.426695

This article is a preprint and has not been certified by peer review [what does this mean?].

Excellent neutralization elicited by stapled closed spike (DS)

ACKNOWLEDGEMENTS

David Veesler Lab John Bowen Ha Dang Anshu Joshi Mary Jane Navarro Young-Jun Park **Joel Quispe Maximilian Sauer** Kaiti Sprouse Alejandra Tortorici Lexi Walls Zhaoqian Wang Samantha Zepeda

<u>Vir Biotech</u> Jessica Bassi Alex Chen David Courti Anna De Marco Luca Piccoli Matteo Samuele Pizzuto