

1

NMR Based Similarity Metrics for Higher Order Structure Assessment among U.S. Marketed Insulin Drug Products

Kang Chen

Division of Complex Drug Analysis (DCDA) Office of Testing and Research (OTR) Office of Pharmaceutical Quality (OPQ) Center for Drug Evaluation and Research (CDER) U.S. Food and Drug Administration (FDA)

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

www.fda.gov

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

www.fda.gov

Patients expect safe and effective medicine with every dose they take.

www.fda.gov

4

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

www.fda.gov

It is what gives patients confidence in their *next* dose of medicine.

www.fda.gov

Disclaimer

THIS PRESENTATION REFLECTS THE VIEWS OF THE AUTHOR AND SHOULD NOT BE CONSTRUCTED TO REPRESENT FDA'S VIEWS OR POLICES.

NMR Based Similarity Metrics for Higher Order Structure Assessment among U.S. Marketed Insulin Drug Products

Exchange Kinetics and NMR Linebroadening

Slow exchange k<<∆f

Intermediate

exchange $k \approx \Lambda f$

в

 $k = k_{AB} + k_{BA}$, $\Delta f = |f_A - f_B|$

Exchange: chemical or conformation;

Exchange/heterogeneity is common for any molecule in solution.

Fast exchange $k \gg \Delta f$

Palmer, Kroenke, and Loria. (2001) Method Enzyml. ¹⁰

Insulin spectra under different buffer

Both chemical shift and line-width changed upon dialysis.

FDA

Higher Order Structure

- Standard definition: any non-covalent interaction (e.g., H-bond) stabilized secondary, tertiary and quaternary structures.
- Broad definition: quinary structure, oligomerization, aggregation, equilibrium and exchange kinetics among different structural forms, e.g., folding/unfolding, dimer/hexamer etc.

Agency's Guidance on HOS

A meaningful comparative analytical assessment depends on, among other things, the capabilities of available state-of-the-art analytical assays to assess, for example, the molecular weight of the protein, complexity of the protein (higher order structure and posttranslational modifications), degree of heterogeneity, functional properties, impurity profiles, and degradation profiles denoting stability. Development of Therapeutic Protein Biosimilars: Comparative Analytical Assessment and Other Quality-Related Considerations, https://www.fda.gov/media/125484/download

The sameness of active ingredient in a proposed generic synthetic peptide can be established through physicochemical characterization and biological evaluation. ... the following properties and other properties, as appropriate: ...Secondary structure; Oligomer/Aggregation states...

https://www.fda.gov/files/drugs/published/ANDAs-for-Certain-Highly-Purified-Synthetic-Peptide-Drug-Products-That-Refer-to-Listed-Drugs-of-rDNA-Origin-Guidance-for-Industry.pdf

Ideal NMR Approaches for HOS Comparison

- Direct testing on drug product (DP) whenever possible b/c,
- HOS can change upon formulation difference;
- Better reproducibility;
- Generic/biosimilar sponsors may only have access to the originator DP.

Problems for NMR in HOS Similarity

- The type of HOS properties reliably measured from DP using NMR was not entirely clear.
- Any similarity metrics for quantitative assessment?
- What level of similarity is realistically achievable?

1D NMR FDA Spectra of protein DPs

Protein aggregation and/or intermediate exchange in Saxenda® and Byetta®.

Well folded protein in Miacalcin®, Forteo®, Lantus®, Rituxan®.

Insulin Structure and Equilibrium

Some of US Marketed Insulin Drug Products

			- 1		
				4	
			Γ.		10
	_	-	_	1.1	
1.1					
1.0					
100					
19 Mar 19					
14 C 18					

Insulin Type	Drug Substance	Drug Product	Approval Type	Year approved	
Rapid acting	Insulin Lispro	Humalog®	New Drug	1996	
	B28: P->K B29: K->P	Admelog®	Follow-on 505(b)(2)	2017	
Long acting	Insulin	Lantus®	New Drug	2000	
	Glargine B3: N->K B29: K->E	Basaglar®	Follow-on 505(b)(2)	2015	
Short acting	Insulin	HumulinR®	New Drug	1982	
	Human	NovolinR [®]	New Drug	1991	

Wang, D.; Park; Patil, S.; Smith, C.; Leaser, J.; Keire, D.; Chen, K., An NMR Based Similarity Metric for Higher Order Structure Quality Assessment among U.S. Marketed Insulin Therapeutics. J. Pharm. Sci, **2020**.

Inter-brand Similarity

Mean vector of the HumulinR[®] $\bar{Z}_{H} = \left(\sum_{i=1}^{m} Ha_{i}\right)/m$

Mean vector of the NovolinR[®]

$$\bar{Z}_N = \left(\sum_{i=1}^n Na_i\right)/n$$

Covariance matrices

$$S = (mS_H + nS_N)/(m+n)$$

Mahalanobis distance (D_M) DM=sqrt[$(\bar{Z}_H - \bar{Z}_N)S^{-1}(\bar{Z}_H - \bar{Z}_N)'$]

Chen K, Park J, Li F, Patil SM, Keire DA. AAPS PharmSciTech, 2018, 19(3):1011-1019.

FDA

HumulinR® and NovolinR®

NMR sample: DP + 5% D₂O

D_M = 20.5

23

Achievable Similarity Metrics

Insulin Type	Drug	Drug	Approval	Year	Inter-	
	Substance	Product	Туре	approved	brand D _M	
Rapid acting	Insulin Lispro	Humalog®	New Drug	1996	3.29	
		Admelog®	Follow-on	2017		
			505(b)(2)			
Long acting	Insulin	Lantus®	New Drug	2000	1.58	
	Glargine	Basaglar®	Follow-on	2015		
			505(b)(2)			
Short acting	Insulin	HumulinR®	New Drug	1982	20.5	
Human		NovolinR®	New Drug	1991		

Wang, D.; Park; Patil, S.; Smith, C.; Leaser, J.; Keire, D.; Chen, K., An NMR Based Similarity Metric for Higher Order Structure Quality Assessment among U.S. Marketed Insulin Therapeutics. J. Pharm. Sci, **2020**.

$\mathbf{D}_{\mathbf{M}}$ in Metabolomics

Table 1

Summary of Mahalanobis distances for cluster separations and Hotellings *T*² and F-test statistics for various datasets and pretreatment conditions.

	Mahalanobis distance		Two-sample T ² statistic	F-value	Critical F-value	Significant?
No scaling		1				
Total separation	7.65		582.21	283.64	3.24	Yes
Partial separation #1	0.93		6.97	3.37	3.32	Yes
Partial separation #2	1.38		15.57	7.53	3.32	Yes
No separation	0.21		0.50	0.24	3.21	No

Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies

Aaron M. Goodpaster, Michael A. Kennedy st

Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

unpublished ²⁶

FDA

Summary from 1D ¹H NMR

- Highly sensitive to protein HOS of folding, oligomerization and exchange kinetics.
- Realistically achievable metrics of PCA-D_M(< 3.3) has been verified on insulin and rituximab.
- How about 2D spectral similarity?

Quantifying Chemical Shift Difference

"combined chemical shift difference" $v[0.5^*(\delta_H^2 + (\alpha * \delta_N)^2)]$

- Sensitive;
- Need peak picking;
- No count on peak intensity;
- PCA was also performed but technically challenging.

www.fda.gov

Ghasriani, Hodgson, Brinson, McEwen, Buhse, Kozlowski, Marino, Aubin & Keire 2016 Nature Biotechnology

FD/4

Amino Acids with Side-Chain Methyl

FDA

Lantus® vs. Basaglar® in δ

5 lots averaged chemical shift (δ) from each brand; 2^o and 3^o HOS

Lantus® vs. Basaglar® in Peak Int.

Relative Peak Intensity

1		Lantus [®]					Basaglar®						
	Peak	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	p value	
i	Ala-a	17.5	20.7	10.8	20.8	23.4	20.2	17.0	22.7	20.8	17.6	0.61	
ł	Ala-a	18.0	19.0	17.0	18.1	10.5	16.2	18.8	17.3	18.7	20.7	0.01	
ł	Ile-2	30.2	34.7	22.7	30.6	22.8	24.5	22.2	29.6	25.5	32.4	0.50	
ł	Ile-b	35.3	34.7	33.6	30.0	32.0	34.5	34.3	23.0	34.1	32.4	0.04	
ł	lle-c	20.1	21.9	10.2	17.8	17.4	20.0	21.1	15.5	18.2	21.0	0.95	
ł	llo-d	20.1	16.8	17.8	16.0	18.0	10.9	21.1	17.2	15.2	21.0	0.50	
ł	Ile-o	16.0	15.0	16.4	17.3	10.0	10.3	15.7	16.5	15.2	17.0	0.03	
ł	llo-f	20.9	32.3	27.4	30.4	21.0	30.6	31 /	35.0	28.7	30.7	0.55	
ł	llo-g	32.0	31.4	30.6	30.4	34.6	31.0	32.6	31.8	31.0	30.7	0.54	
ł	101-2	27.6	26.4	26.7	27.2	30.7	20.1	27.0	25 /	26.6	30.9	0.94	
ł	Lou-b	52.8	52.0	18.8	10 /	50.7	50.0	10.3	50.3	16.5	50.3	0.28	
ł		36.9	37.6	36.3	30.3	38.4	30.5	35.0	38.0	38.3	37.2	0.20	
ł	Lou-C	25.7	25.0	26.7	24.8	25.8	26.6	25.3	27.0	27.0	27.2	0.00	
ł		23.7	17.7	18.8	24.0	23.8	20.0	20.0	27.0	10 /	27.2	0.35	Ro
ł	Leu-e	22.0	18.8	21.6	20.3	24.0	23.4	20.5	22.5	18.5	20.0	0.55	Λe
	Leu-g	41.1	41 1	39.6	41 7	46.2	44.7	43.6	43.5	40.8	45.7	0.26	
ł	Leu-g	23.3	26.6	23.6	25.6	25.8	25.9	24.6	21.2	21.6	25.7	0.20	
	Lou-i	20.1	20.0	16.0	23.0	23.8	23.3	24.0	21.2	21.0	10.0	0.33	
		16.4	50.1	10.5	10.0	52.0	51.9	50.8	18.3	19.6	51.1	0.05	
	Leu-j	21.7	25.4	21.7	45.5	22.0	26.2	22.1	40.5	24.0	22.6	0.20	
	Lou-k	12 1.7	41.8	41.6	/1.2	12.0	/3.0	A1 A	23.7	38.0	12.0	0.38	
	Leu-I	42.4	31.0	32.7	41.5 21.2	42.5	43.5	34.6	20.1	30.0	42.5	0.45	
	Leu-III	26.2	28.2	27.2	20 4	12.2	34.2 40.9	27.6	23.1	32.9 40 E	30.0 40 E	0.54	
	Leu-n	18.1	17.6	18.8	21 /	42.5	40.8	17.3	20.2	40.5	40.5	0.52	
	Leu-0	20.6	20.6	20.4	21.4	20.3	21.7	20.7	20.2	21.0	20.9	0.65	
	Leu-p	10.1	21.9	10.7	16.1	10.1	10.6	10.0	15 1	16.7	10.7	0.37	
	Leu-q	24.2	21.8	15.7	21.0	21.5	22.6	24.7	22 5	20.5	10.7	0.56	
		15.2	10.1	19.4	17.2	21.5	15.7	17.0	15.5	19.0	22.2	0.50	
	Lou-t	23.0	25.3	22.7	25.3	21.4	21.7	21.5	21.6	10.5	21.0	0.0055	-
		12 5	29.9	40.1	41.6	12.4	13.2	40.2	12.0	13.0	17.5	0.0055	-
	Thr-a	42.5	45.8	40.1	41.0	42.2	43.2	40.2	42.2	42.0	47.5	0.73	
	Thr-b	45.8	45.8	24.0	25.0	25.0	4J.0 24.1	25.8	26.1	75.0	25.5	0.75	
	Thr-c	30 /	45.2	12 5	13.8	46.1	15.0	23.8	17.3	23.5	23.5	0.05	
ł	Thr-d	100	100	100	45.8	100	40.0	100	100	100	100	0.21 n/a	-
ł	Thr-e	64.0	65.5	61.5	64.8	67.4	68.5	68.0	64.5	65.5	66.9	0.13	-
	Thr-f	60.2	61 1	59.0	58.8	61.9	65.1	64.5	58.8	58.1	60.7	0.46	
ł	Val-a	22.5	21.6	22.1	19.1	20.0	22.3	21.7	18.7	20.6	21.3	0.85	
ł	Val-h	92.1	91.1	87.1	88.6	91.4	91.2	86.6	87.4	88.4	89.6	0.29	
ł	Val-c	67.2	65.7	64.6	68.9	71.8	73.0	70.7	67.1	69.2	69.6	0.2	
ł	Val-d	84.8	84.8	82.9	87.1	86.3	89.3	90.4	83.1	85.1	83.9	0.5	
ł	Val-e	64.2	65.2	63.6	67.1	65.6	68.1	67.2	62.5	66.4	65.3	0.52	
ł	Val-f	20.0	17.8	19.3	18.0	17.4	18.4	17.2	17.3	19.2	17.2	0.34	
ł	Val-g	20.0	20.2	21.8	21.3	23.5	20.9	21.6	21.1	22.1	25.1	0.54	
ł	Val-h	40.0	37.7	37.8	37.6	39.6	43.3	36.4	40.0	38.3	43.3	0.29	
	Val-i	15.9	20.7	17.5	17.3	20.0	18.1	19 3	16.4	15.4	17.4	0.42	
	Val-i	24.0	20.8	21.9	16.8	21.7	22.9	23.2	20.9	20.3	19.4	0.83	
	Val-k	24.2	21.1	25.7	22.8	23.0	21.5	21.9	24.0	24.3	22.0	0.55	
	Val-I	15.8	19.9	14.5	17.9	17.7	20.2	13.5	17.1	18.6	18.0	0.84	

Rel. Int._{*x*} =
$$100 \times I_x/I_{Thr-d}$$

Reference peak

Lantus® vs. Basaglar®

Peak height profile mapping.

Only 1/48 (2%) peaks had significant p value.

4º, oligomerization and HOS exchange.

Summary from 2D ¹H-¹³C NMR

- Highly specific to protein sequence and HOS heterogeneity.
- No need to blind out non-DS peaks for comparison.
- Realistically achievable metrics:
- $\circ \Delta \delta < 4$ ppb for ¹H;
- $\circ \Delta \delta < 15$ ppb for ¹³C;
- o 98% comparable peak heights.

CONCLUSIONS

- a. NMR to fingerprint peptide/protein HOS in DP for folding, exchange and aggregation.
- b. Unsupervised approaches on inter-brand NMR spectra comparison yielded similarity metrics of Mahalanobis distance (D_M) , chemical shift difference $(\Delta\delta)$ and peak height profile mapping.
- c. These metrics were derived from spectra of marketed insulin DPs, therefore, realistic and achievable.
- d. The approach would be helpful for drug manufacture and development.

Acknowledgement

FDA: Deyun Wang, You Zhuo, Mike Karfunkle, Cameron Smith and David Keire.

University of Maryland: Junyong Park

Discussions: Muthukumar Ramaswamy, Maria Gutierrez Lugo

Management: Cynthia Sommers, Jason Rodriguez

Support: CDER Critical Path "Chemometrics for 2D NMR spectra similarity

assessment of complex drug products"

